One of Hitler’s most devastating gifts to humankind

The Third Reich, under its Fuhrer’s rule from 1933 to 1945, but especially during the second world war, was in more ways than those most obvious to us, masterfully devastating in the scope and effects that would have its scientific research programmes.

One of the branches in which laboured a great deal of keen scientific minds was that of biological warfare with the use of poisonous chemical agents. What could be the most effective means to impede, disable, neutralise or completely remove someone’s abilities to fight or even resist? It would be to sever the connection between the central nervous system and a vital organ: pretty simple and definitely very effective.

German determination, dedication, focus, methodology and efficiency is well recognised and highly appreciated all over the world. This is true today as it was then, and if in this day and age it means to us more in terms of German technology—great industrial machinery and equipment, great cars, great appliances, great electronics—together with the fact that, on the world’s stage, we can trust their government’s word and commitment to seeing things through unwaveringly to the end, it certainly would have had a different connotation to the millions who suffered under the Germans during the great war, be it directly or indirectly. Regardless of these considerations, however, these qualities of determination, dedication, focus and efficiency are excellent qualities, well established in German culture and society, and obviously foundational in making the country a powerful and stable industrial and political leader.

It was to be expected that those scientists tasked to identify, develop and refine the biological and chemical technologies necessary to accomplish their intended function of quickly, silently and as effectively as possible disable the human target without as much as a single drop of blood being shed in the process, was indeed accomplished, and masterfully so. The result was chemical agents that were called ‘nerve gas’.

Nerve gas worked exactly as it was intended: it broke the biochemical connection between the brain and the heart. More specifically, it inhibited the enzyme cholinesterase whose critical function is to break down excesses of the neurotransmitter acetylcholine that enacts the brain’s messaging to the heart in order to avoid overstimulation. Acetylcholine is there to trigger the firing of neurons that control heart and bowel function. It sits in the synapses, the gap between neurons, and does this. The mechanism to ensure that there is enough but not excessive acetylcholine nerve stimulation, is the enzyme-depended breakdown of any surplus acetylcholine. Without optimal function of the enzyme cholinesterase, acetylcholine accumulates between neutrons and induces overstimulation, which can quite effectively bring the heart to a stop without bloodshed, without pain, without any noise, and without any drama: just quickly and effectively.

How does nerve gas work today? Precisely in the same way it did in 1945. It was recognised early on in this research that most, and maybe all animals, no matter how large or small, share if not identical, very similar biochemical and hormonal pathways, especially in terms of nervous system function. Can you see where this is leading?

The technological developments during the era of the second world war were tremendous: the planes, the cars and trucks, the tanks,  the guns, the bombs, and all the physics and engineering, the chemistry and the biochemistry involved. It really was revolutionary in regards to the power available at our fingertips to do whatever we could imagine or whatever was needed to make things simpler, easier, more efficient. What came of all this was global, widespread use of large , complex machinery and global, widespread use of chemical for anything and everything we could think of.

The shift from traditional family farming, which since it began 10000 years ago was always done on really very small scales, and naturally with the largest workable and sustainable variety of plant species being grown together, to the modern ways that could best accommodate the limitations imposed by using great big machines instead of our hands to tend the fields, gave way to huge monocultures, which in turn, gave way to huge problems with insects attracted to these particular species of plants being grown without the natural balancing effects of competing or antagonistic insects attracted to different plants growing side by side in the small space of the family garden.

Just follow this impeccable human logic: nerve gas kills humans by blocking the action of the enzyme cholinesterase required to regulate the amount of stimulation triggered by the neurotransmitter acetylcholine that controls heart function by adjusting neuron firing and breakdown rate; all higher animals, including insects, have similar functioning nervous systems because we all evolved from the same primitive ancestors whose most essential function were controlled by their nervous system, whatever form it took; we want to cultivate huge fields of monocultures because it is efficient in producing large quantities of food without much time or labour by using large machines to take care of these field; unfortunately, large monocultures attract disproportionally large numbers of the same kinds of pests that then have free reigns over the plants cultivated because they have no other insects to compete against; insects are affected in similar ways as we are by nerve gas, but because they are much smaller, because we are so much larger and stronger than they are, they would be lethally affected by small quantities of nerve gas while we would not, or at least not very much.

It’s perfect! Amazing! We spray diluted nerve gas on our large mono-cultured crops, kill all these awfully annoying insects that are trying to eat our food, and then simply collect everything intact and in perfect condition. This is the magic of industrial chemistry. What do we call this diluted nerve gas, these chemical agents? Pesticides, of course. Very popular right from the start, but incredibly more popular today than 70 years ago.

In fact, pesticides are more than 30 times more popular today than they were in 1945. Every year we dump more than four billion pounds of pesticides on the soil of the Earth. Four billion pounds worldwide, and one quarter of this—one billion pounds—is used in the US alone!

As can be expected from our amazing human ingenuity, cleverness, tenacity and industriousness, there are now tens of thousands of different kind of ‘nerve gases’ with different purposes, different functions, different effects and different potencies. We are so darn good, so clever at improving things, making them longer lasting, more effective, more targeted, more concentrated, and naturally… more lethal.

The obviousness of the truth is painful and so we look away: all pesticides are neurotoxic because this is how they function to kill pests. But since we are also a pest of sorts, they are neurotoxic to us in the same way as they are to those insects we want to get rid of. As a result, we are killing the insects, and we are killing ourselves. Moreover, we are doing it better and better each year and with every passing day. That’s the long and short of it. Sorry to be the bearer of such bad news.

Yes, we can eat our own home-grown stuff, and exclusively organic and pasture raised food—I do and have been for the last 18 years since graduating from McGill in the spring of 1996. But pesticides are in the rivers, oceans and water tables, as well as in the air, the clouds and the rain. And this, in ever-increasing concentrations. What we can do is try to protect ourselves as best we can by minimising our ingestion of and exposure to such poisons by all the means available to us, integrate continuous detoxification practices in our daily life, and do whatever we can to shift the balance of policymaking towards the support of small scale organic farming and away from the industrial monoculture model pervading over so much of the planet. Maybe the trends will change, and maybe sooner rather than later, but it’s hard to tell.

With the opportunity and truly great privilege we have to be alive and able to look back onto the past, and consider anew the circumstances, events and developments that took or might have taken place with a fresh perspective encompassing a multitude of informative elements available to us now but that were not at the time, I believe that nobody could have foreseen that the chemical technology of biological warfare agents developed during the second world war in Germany would become so incredibly popular as to pervade the entire planet to the extent of reaching virtually all ecosystems from the poles to the equator, up and down and all around to the most isolated and distant. And although seldom recognised as such, it is this, one could argue, that has had the most important and pervasive negative impact on humankind, one of the most devastating consequences of Hitler’s lethally poisonous legacy: the gift of pesticides.

If you enjoyed reading this article, please click “Like” and share it on your social networks. This is the only way I can know you appreciated it.

The crux of intermittent fasting

It is less than futile, in fact, it is outright nonsensical, to argue in favour of or promote an explanation that is in contradiction with observational evidence. What is required is to find, or at least try to find, a sound and well-founded explanation. And not just for some of the observations, but for each individual observation, as well as for the entire ensemble of observations. This is what we should do.

Fasting means not eating; everyone knows that. The meaning of the word has been loosened to include not consuming appreciable amounts of calories, as in doing a green juice fast, for example, but which should instead rightly be called a cleanse. The expression intermittent fasting implies a cycle of some kind, and is used to mean not eating for periods of 16, 18, 24 or 48 hours, but on a regular basis, like every week or even every day.

Fasting has been known and recognised for its often quasi-miraculous curative effects for thousands of years. Indeed, it is possible to find accounts of individuals recovering from just about any ailment and disease imaginable simply from fasting long enough. It seems, however, that fasting as a healing modality, has, over the past couple of centuries, steadily grown less popular in the medical profession and, as a consequence, also in the general population.

A resurgence of scientific interest over the last decades in the benefits of fasting for treating various degenerative conditions like arthritis and cancer, but also for extending healthy lifespan about which I will write at one point in the future, has brought it back into the spotlight, especially in circles of optimal health enthusiasts, which includes some gym go-ers and body builders interested not so much in optimal health, but mostly in losing fat and gaining muscle.

Therefore, there has been quite a few people trying out or adopting intermittent fasting for periods of a few weeks to a few months, or even longer, but reading things here and there shows that they have had varying success given their initial motivations, whatever those might have been.

Ori Hofmekler was one of the first to popularise the idea of intermittent fasting with his book The Warrior Diet. He has continued to write and to encourage intermittent fasting for a wide range of benefits, especially in regards to the goal of improving body composition, as one of his last titles expresses perfectly: Maximum Muscle, Minimum Fat.

Dr Hertoghe, the world famous endocrinologist and anti-ageing specialist, as well as Mark Sisson (Primal Blueprint) have also been vocal and influential proponents of intermittent fasting for a while. More recently, Dr Mercola did several interviews with Hofmekler, and wrote a few articles on the topic, sharing his experience and enthusiasm for the health and fitness benefits intermittent fasting can bring. These are just some of the well known players that I know of and respect in the natural health community, that have endorsed and promoted this kind of cyclical fasting.

Naturally, as is the case for almost any topic we can think of, there are opposing opinions and, in fact, bashing of intermittent fasting as a means to improve health and body composition, especially in the popular fitness and gym culture. And, as is also the case for almost any topic we can think of, contradictory views and opinions are usually caused by misunderstanding, or at least, incomplete understanding of the elements involved, and in particular the more subtle ones.

On the one hand, we have the proponents claiming that we can very effectively get much healthier, with much improved energy levels, mood, digestion, and natural detoxification and excretion of metabolic acids; normalise and recover the optimal balance of specific hormones, and eventually, of the entire hormonal system; over time lose all excess body fat reserve, increase flexibility and hasten recovery, better preserve our precious muscle tissue and build more very efficiently. And these are just some of the claimed (but also documented) benefits of intermittent fasting.

On the other hand, the nay-sayers and bashers report that these claims are more than just false, they are, in fact, often the exact opposite of what they have found or seen for themselves or in others coming to them for help and expert advice. Reports of feeling really terrible, with massive headaches, bad digestion, awfully low energy levels, and thus, obviously, very bad and destructive moods; loss of some fat but also, over time, of lots or maybe even most of their muscle tissue; extreme hunger, with frightening ravenousness when evening mealtime comes around, leading to monstrous, uncontrolled and uncontrollable overeating without discrimination of food kinds or quality, and over time, showing obvious signs that can be identified as those associated with eating disorders.

How is it possible to have research, studies and documented cases—plenty of documented cases—that provide observational evidence—proof, if you prefer—that support the claims of both of these camps? How can we observe and actually measure such profoundly different consequences in different people that are supposed to follow comparable diets, consequences that are diametrically opposed to one another. In other words, observational evidence that appears to be completely and totally contradictory?

A simple approach, the one espoused by many, maybe most, of the intermittent fasting bashers, is to just say that proponents are wrong and imagining things, letting themselves be fooled by the hype, but actually blind to the reality of the detrimental consequences of practicing cyclical fasting.

For me, the only satisfactory approach is the one that seeks to explain all the observations, to reconcile all the observational evidence, and make sense of the entire ensemble of information available through a physiology and biochemistry based explanation that is complete. I also think it is fair to say that there are more better informed proponents than there are opponents, but this is not obviously the case, and I would thus not bet much on this claim.

Here it is, the crux of the matter, the one single crucial element needed to understand and explain the wide spectrum of apparently contradictory observations that is overlooked because it is misunderstood:

The body’s response to intermittent fasting is entirely dependent upon the state of one’s metabolism, and everything about it hinges on the physiology of nutritional ketosis. 

In fact, the vast majority of the benefits of intermittent fasting are those derived from nutritional ketosis but heightened by the fasted state, and therefore, can only become manifest if the fasting individual is keto-adapted and remains in nutritional ketosis most of the time.

You might be thinking: what in the world is nutritional ketosis, and where’s the explanation for the contradictory observations? Nutritional ketosis is the metabolic state in which the liver manufactures ketone bodies from fat to provide fuel for the brain cells that can only use glucose or ketones for their energy needs. This only happens if and when circulating insulin levels are low, and when blood glucose stays below 80-90 mg/dL for a period of 24-48 hours (generally speaking, on average, and in normal circumstance). The reason is fat will not be burned for fuel is there is plenty of glucose in the blood, and in order to burn fat, insulin must be low.

This metabolic state is induced either by fasting—this is the quickest but also most extreme way to do it, or by eliminating insulin-stimulating carbohydrates (sugars and starches) from the diet—this is by far the easier and obviously much more sustainable way to do it. The longer it is maintained, the better adapted the metabolism becomes. But before ketones are produced to fuel the brain, the body goes through metabolic changes to which it tries to adapt as best it can. The most important but also most severe of them all, is the fundamental shift from using glucose as the primary fuel, not just for the brain, but for all cellular energy needs in the body, to using fats, both from body fat reserves and from food.

The bane of our time is global, chronically elevated insulin levels. Hyper-insulinemia, as it is technically called, sits squarely as one of the root cause of all the diseases of civilisation that kill most (90%) of us today, more or less uniformly across the planet. What does this have to do with our considerations of intermittent fasting? It has everything to do with it:

Insulin is the master hormone that orchestrates the metabolism in what relates to storage and usage of macronutrient (carbs, fats, and proteins) at the cellular level.

Chronically elevated insulin always and inevitably leads to insulin resistance. Insulin resistance means that cells do not respond to insulin as they should, and require ever increasing concentrations of insulin in order to move glucose into the cell. And ever increasing concentrations of insulin means ever increasing inability to use fat cellular fuel, with particular difficulty in unlocking and tapping into the usually greatly overabundant reserves of body fat.

What is truly remarkable is that insulin resistance, even if it has been developing and growing steadily with each passing day and with each high carb meal or snack over our entire lifetime, it can be reversed in weeks when insulin-stimulating carbs are eliminated from the diet: 48 hours to enter nutritional ketosis; one week for water retention release, initial intestinal detox and basic adaptation to fat-burning; four weeks for functional keto-adaptation; and 8 weeks for complete keto-adaptation.

Eliminating insulin-stimulating carbs eliminated the need for large insulin secretions by the pancreas. Therefore, both glucose and insulin concentrations steadily decrease with time, and eventually fat-burning and ketone production kicks in, marking the first step in the transition of the metabolism from sugar-burning to fat-burning, which is what we referred to as fat- or keto-adaptation.

There is a catch though: before fat-burning and ketone production begins, the metabolism of the insulin resistant individual will go through withdrawal from its sugar addiction. First, sugar levels start to drop. After a number of hours, 3 to 4 hours say, blood sugar is too low to supply enough fast-burning glucose to cells for their metabolic activities. Because insulin remains high, and because the body is highly insulin resistant, as we said, it is not possible to use fat from the body’s fat stores. Therefore, it is the liver that comes to the rescue and begins to convert its stores of glycogen into glucose and pumping that into the bloodstream to provide cellular fuel.

Within a few hours, however, the glycogen in the liver is depleted, and blood sugar drops once again, and lower still. Because the body remains unable to tap into its fat reserves due to the state of insulin resistance, it has, at this point, no choice but to turn to muscle tissue, from which it is far easier to breakdown protein and manufacture glucose than it is to start burning fat. And thus, the muscles are eaten away in order to provide the glucose to all of the multitude of insulin resistant (sugar-addicted) cells throughout the organism.

We now come to the final analysis of our observational evidence in regards to intermittent fasting, and consider two scenarios that can explain, as it rightly should, the ensemble of observations in its entirety, and thus clarify and reconcile the apparent contradictions that are seen, and which lead to serious confusion about the issue, even, and maybe especially, among our health, fitness and bodybuilding experts.

Scenario 1: We take a perfectly keto-adapted person who has been eating a diet devoid of insulin-stimulating carbs for a long time, and who therefore always has very low glucose and insulin levels, and as a consequence, exquisite insulin-sensitivity. What happens if they stop eating? Nothing special, really. Their body is always using fat and ketones to supply all healthy body and brain cells with their metabolic energy needs. So, if there is no fat that is provided through the digestive system, then it is taken, without any trouble or noticeable changes in energy levels or concentration, from the body’s fat reserves that are always plentiful, even in the leanest among us with single digit body fat, because 1 gram provides 9 calories, which means that we need only about 200 g for a whole day of normal activities, and have at least 5 kg at any given time (8.5% fat on 60 kg body weight).

Moreover, if we exercise during the fast, there is no noticeable difference because at low intensity, cellular energy needs are taken care of by fat which is continuously released from the fat stores into the bloodstream, while at higher intensity the glycogen stored in the muscle cells themselves, can be used in the form of quick burning glucose together with additional supply from the liver than converts its stores of glycogen if need be (if stress hormones are secreted).

So, biking and working out with weights, for example, is perfectly fine and actually feels great. Even more interesting is the fact that stimulating the muscular system by exercising while fasting triggers the release of various hormones in addition to growth hormone for which there is nothing more effective than fasting, whose purpose is primarily to preserve those physiologically important muscle tissues as essential for functional survival, while breaking down to recycle the proteins of other tissues which are not required like lumps, tumours, and scar tissue. And this means that the hormonal environment created by exercise under fasting conditions is conducive to both preserving and building more muscle, all the while also expediting and maximising fat-burning. And this is what is observed.

Hunger is present at times, but is certainly far from being problematic. There are no headaches, no stomach pains, no sleepiness, no scattered mental discursiveness, no problems concentrating or working. Sitting down to eat the evening’s nutrient-dense, enzyme-rich and high fat meal with adequate amounts of protein for tissue repair and muscle building, is nourishing, perfectly satisfying, and well digested throughout the evening and night, as long as we eat several hours before going to bed. No over-eating, no cravings, no psychological disturbances, no problems at all. A picture of perfect metabolic efficiency.

Scenario 2: We take an average but pretty active person from the general population who eats a standard diet with plenty of insulin-stimulating carbs, both simple sugars, and complex carbs in the form of pasta, rice, whole grain bread, etc (70% of calories), and who therefore always has high blood glucose and insulin levels, and as a consequence, pretty strong insulin resistance. What happens if they stop eating? We saw this earlier: blood glucose drops, but not insulin; the liver starts to pump out glucose to pick up the slack, and runs out after about 3-5 hours; sugar drops once more, but not really the insulin; since fat stores cannot be tapped into, muscle tissue is broken down to manufacture glucose; longer period of fasting means more muscle breakdown.

If we exercise gently, things are fine at first because we can tap into the glycogen stored in the muscles, but will soon get much worse because we increase the energy demands, but continue to be unable to use body fat stores, and therefore increase the rate at which muscle tissue is broken down, especially if we do weights and high intensity training.

Low intensity aerobic exercise depletes glycogen from the muscles and when it runs out, we feel exhausted, completely flat out. (This is the same as hitting “the wall” in long distance events, and only occurs because the body cannot readily tap into its fat reserves: a well keto-adapted athlete never really hits any such walls!) Far worse is high intensity exercise, which causes more intense and faster muscle breakdown, the higher the intensity, the more muscle breakdown.

Waking up in the morning after a night’s sleep (and unconscious fast), we are starving, dearly longing for the bread, the jams, the cereals, the orange juice, the waffles, the maple syrup, and everything else we can imagine, but we hold out and go to work. Every hour is excruciating, terrible headache, hunger pains throughout the abdominal cavity, but when these subside, we are falling asleep, with a complete inability to concentrate on anything at all. We feel like shit.

By the time evening rolls around, we are so ravenous we would eat a horse. So we sit down and eat, and eat, and eat everything we can get our hands on: pizza, pasta with sauce and cheese, garlic bread with butter, steak and potatoes or french fries, and then desert, sweets, oh man, we waited all day to eat, and now we can eat anything and everything we want, because tomorrow we’ll be starving again for the whole day. We get up in the morning, and the whole cycle starts over again.

Over time we kind of get used to it, but because we don’t understand the most essential element of the whole thing—nurturing nutritional ketosis—we remain just as insulin-resistant, every day we feel shitty, every night we eat like a pig, and throughout the whole time, more or less, we break down muscle, and our insulin resistance prevents appreciable fat loss. After doing this for a while and seeing the detrimental effects of this regime, we go seek help from a fitness expert. They tell us that this intermittent fasting thing is a load of shit, and as them, grow instantly convinced that all the stuff people say about the benefits it can bring for optimal health and improved body composition is also a load of shit: if it didn’t work for me, then it simply cannot work for anyone.

Unfortunately, neither we nor the fitness expert understands enough physiology, biochemistry, and endocrinology to be able to make sense of these conflicting and contradicting accounts, personal experiences, and observations reported in the scientific literature, and just settle into this view that it really is a load of BS, and that it might work a little, sometimes, on some people, but not on others, and no matter what, it always leads to pathological states of mind, if not full fledged eating disorders.

It is my hope, however, that you are now able to see how these very observations, as conflicting, contradictory, and certainly quite puzzling as they may seem at first, can be explained and reconciled marvellously well in light of a better understanding of the basic principles of energy metabolism, and of the remarkable but unfortunately almost universally misunderstood state of nutritional ketosis, that most medical professionals usually mistake for the pathological condition of diabetic ketoacidosis.

Finally, in closing, I have a confession to make: I have been experimenting with intermittent fasting in one form or another for many years now. I never eat anything before midday, and on most days until about 14:00, which makes it an approximately 18-hour fast from 20:00 the night before. On weekends, I fast until noon, and then go do weight training. On those days, I usually eat for the first time around 17:30, and make that my single meal of the day. On some days I eat a large lunch and dinner to increase my overall calorie and protein intake. I usually workout 3-4 times a week, and usually in the late afternoon-early evening.

I have not experienced loss of muscle since I dropped the insulin-stimulating carbs from my diet in 2007. Both muscle tone and strength is maintained very well even after long periods without resistance training. I have, however, never made a particular effort to gain muscle mass. This year, I would like to see how much muscle I can put on, and will thus put the science to the test for myself. If you are interested, don’t worry, I’ll keep you posted. If you’re not, then that’s fine too.

But if there is a single thing you must remember from what I wrote, it is this: you can only really benefit from intermittent fasting when you are keto-adapted, and remain in a state of nutritional ketosis the majority of the time. Otherwise potential benefits are lost, and the practice can become rather detrimental.

hunterslookingoverplain

How long do you think these hunters hunt each day? Do you think they have a big breakfast before going, or a large lunch while they are out? How long do you think they are out before they settle back around the fire in their village to have their main meal of the day? And what do you think they will eat when they do return with their catch of the day?

(This article was written after reading this article by Dani Shugart on T-Nation sent to me by a friend who knew I would have some remarks to make, and probably some clarifications to bring to it.)

Understanding digestion

There are four things about digestion that I believe to be essential to understand, remember, and always keep in mind. The first is that although the environment of the stomach can be, and is generally at least mildly acidic, the intestines must be alkaline. The second is that the level of acidity inside the stomach depends on what is in it: it is in response to whatever comes into the stomach that specialised cells of its lining secrete hydrochloric acid in greater or lesser amounts. The third is that only protein requires a highly acidic environment to be properly broken down into the amino acids that make up protein before moving on into the small intestine; fats and carbohydrates neither require nor stimulate the secretion of acid in the stomach because they are broken down in the alkaline environment of the intestine. And the fourth is that water is totally crucial to the proper function of all digestive organs, and to the whole process of digestion from start to finish.

digestive_system_with_labels

Model of the human digestive system with labels

Because proteins are so hard to break down, they must remain in a highly acidic environment in the stomach for about 3 hours before the resulting chyme should be, can be, and is normally transferred to the small intestine. (Obviously, the time depends on the amount.) And the more acidic the environment of the stomach, the better it is for the breakdown of protein, but also to protect the organism by destroying pathogenic bacteria that could have come with the protein, as is presumably often the case in the wild.

In addition to the hydrochloric acid secreted by the stomach, protein-digesting enzymes (proteases) like pepsin are also secreted by the stomach when it contains protein. Moreover, the acid activates the inactive forms of the enzymes prorennin and pepsinogen into their active forms: rennin is necessary for digesting milk protein, and pepsin breaks down the proteins into polypeptides. It is very important to remember that the stomach has cells that sense what nutrients are present, so that it knows what and how much to secrete for their digestion.

Many people suffer simultaneously from amino acid deficiency, and the consequences of putrefaction of undigested protein in the intestine, even though they eat plenty, if not too much protein, because their stomach does not produce the amount of hydrochloric acid that is needed for proper protein breakdown. In fact, this is very common in older people, but it is also a problem in the middle aged and even in young adults. This problem can be partially remedied by taking hydrochloric acid supplements with protein meals, an approach that works very well for the elderly, but addressing the fundamental issues that lead to digestive dysfunction is obviously most important. The digestion of fats and carbohydrates is entirely different.

Simple carbohydrates eaten on an empty stomach will move out of it and into the intestine in a matter of minutes. This is why blood sugar levels go up almost instantly when we eat or drink simple carbs like whole fruit or fruit juice. Starchy carbohydrates begin to be broken down into sugar when they come into contact with those enzymes in the mouth whose purpose it is to do this (primarily amylase), and will be broken down completely over the course of a few hours, not in the stomach, but in the small intestine.

The same goes for fat: fat or oil by itself eaten on an empty stomach will swiftly move to the small intestine as it does not need an acidic environment, and thus simply does not need to stay in the stomach. But unlike carbohydrates, fats need to first be emulsified into droplets that can mix in the watery environment of the small intestine. This is done by the bile produced by the liver, but stored and secreted by the gall bladder into the small intestine. The emulsified triglycerides are then broken apart by pancreatic lipase that separates the glycerol backbone from the three fatty acids. The free fatty acids are absorbed in the small intestine and into the bloodstream by passive diffusion (as is water).

Another important difference between the digestion of carbohydrates and fats is that while it is no problem at all for fat to sit in the stomach for hours, together with the protein being broken down by the acidic chyme, carbohydrates, and especially simple carbs, start to ferment very quickly if they do not move out of the stomach. This is what gives rise to the characteristic bloating that we feel when we eat simple carbs together with other foods, but especially when combined with any kind of protein, the best example of which is having sweet things either with or after a large meal that typically contains plenty of protein, such as the terrible habit of having fruit after the meal, as is done in most western countries, as opposed to the much wiser habit of eating the fruit as a starter, before the meal, as is done in some other cultures. Bloating, burps, gas, stomach aches, etc, as well as really bad digestion followed by really poor absorption all result from the fermentation of the simple carbs that remain in the stomach for longer than a few minutes, as they normally would, before passing to the small intestine, as well as the incompatibility of various digestive enzymes, each with its own specific nutrient to break down, released into the intestine by the pancreas, all trying to do their work, but clashing against one other in the process.

Therefore, to properly digest protein there should be no simple or starchy carbohydrates in the stomach for the entire breakdown process that lasts about 3-4 hours for a normal (smallish) meal. In addition, there should not be any alkalising liquids like alkaline water, sodium bicarbonate water, lemon water, or green juice in the stomach, because they will work to neutralise the acid needed to break down the protein, and thus cause bad digestion and stomach aches. You can try any of the combinations described here if you want evidence through personal experience, but I’m sure you have experienced most of them at various times, although most probably unaware of it. I guarantee that it works in exactly the same way for everyone, even if some are definitely more sensitive than others.

In case you don’t know or don’t remember from other articles, I think no one should consume simple or starchy insulin-stimulating carbohydrates because their consumption in any amount inevitably damages body and health in any one of several very predictable ways. The reason why I am emphasising these points about carbohydrate digestion is not only because the majority of people in the world get most of their calories from insulin-stimulating carbohydrates, but also because these carbohydrates are most disruptive to digestive health in many more ways than we tend to know or consider.

I have written recently in the article Detoxification about the disastrous consequences on the digestive system of a diet consisting mostly of simple or starchy carbohydrates, all of which are caused by chronic acidosis of the intestine. To recover from or avoid these digestive disorders and the diseases that result from them, it is of paramount importance to, on the one hand, eliminate these acid-forming sugars and starches, and on the other, alkalise as much as we can the intestinal tracts on a continual basis, day after day, and year after year.

The natural consequence of these facts and considerations is that the most healing and health-promoting of diets is one that consists primarily of alkalising drinks and foods—alkaline water, green juices, lemon water, and green and leafy vegetables—and in which energy needs are covered by the best fats—coconut oil, raw grass-fed butter, wild fish and meats, and whole, soaked nuts and seeds—with protein consumption kept to the essential minimum based on individual needs.

Water is exceedingly important for digestion, and I have written about this in Why we should drink water before meals. The two most crucial roles of water in the digestive process are: First, to provide the stomach the level of hydration needed to make, maintain and adjust the thickness and consistency of both the layer of mucus that protects the lining of the stomach from the corrosive acidic secretion required for the breakdown of protein, and for of the chyme itself during the initial phases of digestion when it is churned by the stomach. Second, to provide the pancreas the required hydration for it to be able to produce the all-important pancreatic fluid (bicarbonate solution) whose purpose is to neutralise the acidic chyme once it is transferred from the stomach to the small intestine, as well as to carry the enzymes produced by the pancreas to break down those foods that do not themselves carry and provide the enzymes needed for their proper digestion.

As is always the case for everything that relates to health, we can only truly understand by understanding the physiology—how things work. The digestive system is the one around which all other systems are arranged because the health and survival of the organism as a whole depends entirely on it. And the key to optimal digestion and health is the understanding that the stomach only needs to be acidic when there is protein in it, the intestine must always be alkaline, and the digestive system as a whole always requires a good supply of water.

Therefore, we should aim primarily to alkalise and hydrate by drinking lots of alkaline mineral and chlorophyll rich drinks together with liberal but appropriate amounts of unrefined sea salt (see How much salt, how much water, and our amazing kidneys); consume plenty of fat; always consume protein either by itself, with fat or with green vegetables, but never with simple or starchy carbohydrates; if you eat simple carbs such as sweet fruit, make sure you eat it by itself on an empty stomach; and always make sure that when you eat protein, the environment of the stomach is kept acidic, and thus do not have any alkalising liquids for at least 60 minutes before and 3 hours after the protein meal, but also make sure to have at least half a litre of plain water, at least half an hour before eating.

Keeping to these simple principles will ensure optimal digestion, optimal digestive health, and optimal overall health, day and day, and year after year, throughout life, from childhood to old age.

Everything is in the biochemistry

The trillions of cells that make up the body don’t give a shit if you are happy and joyful, or dissatisfied and angry. They only know biochemistry, nothing else. The fact is that in regard to health, biochemistry is everything, and everything is in the biochemistry. This means that absolutely everything in the body is defined and determined by the biochemistry, and that everything we eat, drink and do, but also everything we think, feel and believe, defines and determines the biochemistry of the body.

There is no doubt that any negative stressor, including and maybe especially the various states of dissatisfaction and unhappiness most of us cycle through each day, are truly poisonous to our health. But no matter how complex the details of this may seem, no matter how much or how little of it we understand or realise, the imbalances caused by every negative stressor will be seen clearly in the biochemical tracers that can be tested for and measured. And it is those tracers together with every other bioactive molecule that define and determine all cellular functions and interactions on which depends health or disease. For example, morning cortisol levels above 10 micrograms/dl most probably means too much stress on a daily basis, independently of its causes, and cortisol levels below 5 most likely means adrenal fatigue from chronic stress over an extended period of time, also independently of what has caused this. These observations have nothing to do with how you feel about it, and the stress hormones secreted by the adrenal glands do not know what you think or feel or believe about anything at all; they just respond to the biochemical conditions in the body.

If you are chronically stressed, unhappy and generally feeling shitty, it is certain that your biochemistry is not in balance, that as a result of this your health suffers, and that you absolutely need to do something to change and improve your situation. If, on the other hand, you are feeling happy and enthusiastic, and everything seems perfectly fine, this does not imply that your biochemistry is in balance, and it certainly does not imply that it is optimal. This is obvious considering that more or less everyone in western countries dies between 65 and 85 of heart attack, stroke, cancer, diabetes and Alzheimer’s. I’m sure you’ll agree that it would be silly to say that all of these people—in this case about 90% of the population—die because they are unhappy and stressed, or that if they were as happy as can be, they would not get sick.

Feeling happy and joyful does not in the least make us immune to disease. My dad was a remarkably happy and joyful fellow for most of his life, but he was fat from the age of about 25, was taking various medications from the age of about 50, and increasing in number with time, just as his parents, and just as most people today, and he died rather unexpectedly (isn’t this almost always the case?), at home, from heart failure due to extreme dehydration as a consequence of four days of intensive chemo intended to treat a rapidly growing cancerous sarcoma in the arm. This happened even though he walked into the hospital with a spring in his step, and the belief of a good natured, joyful man that he would make it through this thanks to his positive attitude, and his lack of fear about this whole cancer thing. Obviously he was proved direly wrong, and so were the stupid, incompetent doctors that recommended that treatment to this obviously fragile 70 year-old man with highly compromised health.

The chemo administered intravenously, burned through him from the inside: he had continuous diarrhoea with no control of his bowels, but every time he drank even a sip of water, he said it felt like fire burning through his throat. So, he couldn’t drink. Amazingly, the nurses that came to measure his blood pressure, which must have been low and dropping by the hour, must not have noticed or found this problematic, because they didn’t bring him back to the hospital and put him on an IV in order to provide the water and salt needed to keep the heart and kidneys working. Living 5600 km away and 6 hours ahead, I was made aware of all of this in retrospect with several days delay, and was unable to do anything about it in time. Everything happened really quickly: four days of chemo, and he was dead seven days later.

It is one thing to know and say that negative stress, whatever form it takes, poisons our health, and indeed makes us weak, tired, and prone to developing a wide range of disease conditions. But it is another entirely different thing to say that if you are happy and joyful you don’t really need to worry about what you eat as long as you eat a “healthy” and “balanced” diet, and enjoy what you eat. That’s plain wrong, objectively false. And what does “a healthy” or “balanced” diet mean anyway? A little bit of everything? Certainly not! And isn’t this what we are aiming to define as precisely as possible through reading, studying, personal experience and investigation, and efforts towards the noble goal of achieving perfect health?

Why brush your teeth with Tooth Soap instead of with Colgate, Crest, Tom’s or nothing at all? Is it because it makes you happier, or it is because you know it’s better for the teeth? It’s the latter, of course. And independently of your state of happiness and joyfulness, Tooth Soap is better for your teeth and your health than Colgate, (and a high quality natural bar soap is even better and much cheaper). In exactly the same way, a green juice made entirely of green vegetables is a million times better for you than a fruit smoothie with bananas, apples and berries, or peaches, apricots and carrots, or whatever you like. And this is independent of your state of happiness or unhappiness, even when considering that drinking the fruit smoothie may make you feel “better” and happier than drinking the possibly (but not necessarily) bitter and astringent green juice.

Why? Not just because the fresh green juice is so objectively excellent for your health in so many ways, but primarily because each droplet of insulin in your blood beyond the strict minimum needed by the body at any given time damages the cells and tissues throughout, from the toe nails, the hair, and the skin, to the eyes, the optic nerve, and the brain cells, in the entire circulatory system, and to and from every cell, tissue and organ in every part of the body. Therefore, because insulin is raised above the strict functional minimum more and more by every single additional gram of insulin-stimulating carb you eat or drink, this means that every one of these grams of carbs harms the body in some way. The green juice can be said to be objectively good in the absolute sense of the word, while the fruit smoothie can be said to be objectively bad, also in the absolute sense of the word. Yes, I’m sorry to have to repeat this, but sweet fruit other than berries is bad for your health. And fruitarians, like Steve Jobs for most of his adult life, well: pancreatic dysfunction, failure or cancer (as was the case for Jobs), and otherwise cancers of all other kinds will almost inevitably come to anyone who eats only fruit for an extended period of time. This is entirely independent of what you think about it, what you feel about it, and how happy or unhappy you are when you eat or in general. It’s objectively thus, based solely on the biochemical effects of these foods on the body and its metabolism.

Going further still with the biochemical connections, everything we eat can either relieve inflammation or cause it, relieve acidosis or cause it, and therefore, either relieve bodily stress or cause it. All insulin-stimulating carbs directly and indirectly cause inflammation, cellular damage, acidosis, and thus physiological stress. This physiological stress not only compounds with the psychological stressors, but actually causes additional psychological stress, even if it is not perceived as such, simply because stress hormone levels are higher. As a consequence, we are more sensitive, more delicate, more prone to anxiety and nervousness, more easily startled and generally edgy, all of which just means we are stressed, more stressed.

There’s just no way around this: the bodymind is a seamlessly bound whole in which everything affects everything else, in all ways and at all levels. And once more, from the cellular perspective, the cells really don’t care in any way about how you feel, what you think, what you believe and how joyful or happy you are. How could they? They only strive to survive as best they can in the environment of the body, and they experience the consequences of everything we eat, drink, do, think and feel compounded and mixed together, only through how all of this is expressed in the complex biochemical makeup of that inner environment.

An excellent illustration of the importance of optimal biochemical balance is B12 deficiency induced disease conditions such as depression, psychosis, bipolar mania, schizophrenia and paranoia. You can take someone suffering from any one of these conditions that would be almost certainly, and thus inevitably wrongly, diagnosed as psychiatric in nature, give them all the drugs you wish, all the attention, love and caring, all the therapy and counselling in the world, and nothing will make them better. Only correcting the B12 deficiency will make them better. And often almost immediately so, within days, through daily injections of 1-2 mg doses of methyl-cobalamin.

I do not put into question the intentions and sincerity of health writers and bloggers. What I put into question is the advice given that has the potential to reach countless thousands, and cause harm to those who, looking up to these health role models, choose to follow their recommendations. Since we are concerned with optimal health, we need to be accurate and scrutinising. We need to be clear and sharp, pragmatic and scientific, and come to solid conclusions based on facts, in this case, physiological, biochemical and metabolic facts. And this cannot be done without, on the one hand, a thorough understanding of physiological, biochemical and metabolic functions, and on the other, measurements of the blood markers that are the most direct means we have to look inside, so to speak, in order to objectively assess the state of health or disease of the body.

(This was written in response to a comment by Gabriala Brown (Tooth Soap) about a comment I made in reaction to a post by Frederic Patenaude on Kevin Gianni’s Renegade Health blog. If you enjoyed reading this article, please click “Like” and share it on your social networks. This is the only way I can know you appreciated it.)

The kidney: evolutionary marvel

Kidney stones appear at all ages. They are common in older people, but also in the middle aged. They are seen in infants and toddlers, but also in teens and young adults. About 80% of them are calcium stones, 10% struvite stones (from urinary tract infections), and 10% crystallised uric acid, but uric acid ‘seeds’ also promote the formation of calcium stones. That this is so naturally implies that chronic kidney dysfunction must also be common.

Pain associated with a kidney stone can be sharp or dull, mostly depending on the size of the stone either partially blocking or passing through a calix in the kidney or the ureter from the kidney to the bladder, and usually expresses itself as pain in the back or side (easily mistaken for muscular strain), in the abdominal area (easily mistaken for indigestion) or in the groin above which sits the bladder. That such a pain should appear and persist when there are no reasons to suspect either muscle soreness or indigestion indicates that the problem may well be with one or both of the kidneys.

We take almost everything for granted. That we should have air that is not toxic to breathe, water that is not polluted to drink, food that is not contaminated to eat. That we should have a comfortable and warm place to live and work, hot water to shower and bathe whenever we wish, running water wherever we find ourselves. That there should be living plants, insects and animals; soils in which can be planted seeds that will grow; rivers, lakes, seas and oceans in which fish can live, thrive and multiply; mountains, forests and plains in which trees, bushes and grass, beasts, birds and bugs, and every living thing can also not just survive, but thrive. We take these for granted, maybe all the time, and if not, probably most of the time. It is, unfortunately, more than obvious that we should not.

That we take almost everything for granted is even more remarkable when we consider this bodymind (that we customarily and mistakenly call ours), with its countless numbers of specialised cells and tissues, its amazingly intricate organs and systems, and its multitude of facets and functions. What happens when we breathe in, and then when we breathe out? What happens when we drink a glass of water or when instead we drink a glass of juice? What happens when we drink a glass of Coke or a glass of wine? What happens when we eat something: when we eat an apple or a cucumber, a carrot or a celery stick, a potato or an avocado; when we eat an almond or a walnut, pumpkin or sunflower seeds; when we eat meat or fish, eggs or cheese, olive oil, fresh butter or coconut oil; and what happens when we eat burgers and fries, doughnuts, cookies, cake and candy? What happens in the stomach, in the pancreas, in the liver, in the gall bladder, in the small intestine and in the colon? What happens during the process of digestion? How does digestion take place? What happens in the kidneys? What happens in the bloodstream? What happens in the brain?

Most of us have no idea. But we should, should we not? We take it all for granted: that everything will just work; everything will take care of itself; the body will take care of us. Although this can happen, sometimes, in general it doesn’t. But it should, shouldn’t it? Why does it escape us so thoroughly that this bodymind—every single cell in it—is entirely made from what we eat, drink and breathe? It is so obvious and yet it eludes us. And so, we must consciously come back to this again and again.

When we begin to explore the physiology of the body to find out how things work, we find that both the complexity with which we can appreciate, and the understanding of the various functions and interactions, arrange themselves in layers from coarse and superficial to more subtle and profound. Inevitably, as appreciation and understanding deepen, it becomes impossible to find all of it anything less than amazing. And although this can be said for many, maybe even for all organs, it is particularly true in this case: the kidney is an evolutionary marvel, a true jewel of physiological evolution in animals.

The kidney is without any doubt one of, if not the most refined organ both in architecture and function. To pack together so many tiny, delicate structures, working both independently and in unison in an array of such intricate, complex and subtle functions and interactions is truly mind boggling and awe inspiring. This fact is totally underappreciated. And for this very reason, I feel it is important to bring this to your attention before moving on, so that it can remain clear throughout your reading of this article. I hope that with an understanding of what the kidneys do, how they function and what they need, this appreciation will become permanent for you, coming up on its own every time you drink a glass of water, and also every time you remember that you should have.

What we need to know

The kidneys are two bean shaped organs typically 11 cm in height, 6 cm across and 3 cm thick, on top of which sit the suprarenal (as in: above-the-kidney) or adrenal glands. They are located deep in the abdomen close to the spine, one on either side, in the area of the lower back, just below the rib cage, protected in part by the last couple of ribs but mostly by the tick muscles of the back. The kidney has four main components: a thin layer that covers it like a thick skin called the capsule; a thicker layer just beneath the capsule called the cortex (outer layer), in which are most of the arteries and veins; the inner layer called the medulla (middle layer) constituted by conical structures called the pyramids (there are usually 7 of them in humans) with their wide part or base in the cortex and their tips pointing inwards towards the innermost  part of the kidney; and finally the pelvis (base) with its calyces connecting to the ureter.

kidneyDetails

As for everything that relates to health, understanding how to promote optimal function of a cell, tissue, organ or system requires understanding how it works. It is important to remember that every living cell and organelle does what it does not for our sake, but to maximise its own prospects for survival. When we understand what an organ is trying to do, then we can understand what is needed to make sure that it can do it with ease and efficiency. And when the organ functions with ease and efficiency, it functions optimally. This is the approach to use to maximise our prospects for living a long, healthy and happy life.

So, what is the kidney trying to do?

One: Take out of the blood metabolic wastes and toxins, primarily urea, uric acid and creatinine, all resulting from protein metabolism, while keeping as much as possible of the useful stuff, especially water, minerals and amino acids. Two: Maintain blood electrolyte balance (sodium, chloride and potassium; calcium, magnesium and phosphate), pH (bicarbonate and hydrogen) and osmolarity (concentration of solutes in general). Three: Regulate body fluid content and blood volume and pressure. Sodium is the most important electrolyte and blood pressure regulator, and therefore most closely monitored by the kidney.

What are the main metabolic waste products?

Urea results primarily from the breakdown (oxidation) of amino acids that are not used to build tissue, i.e., protein intake in excess of what can be used at any given time to build and repair cells, (but also from our own tissues). Urea also result from the conversion of ammonia, another byproduct of protein digestion which is so acidic that in high concentration it can cause cell death. The kidney, therefore, tries to eliminate as much as possible of the urea, recycling only what it must depending on the body’s needs, especially to increase water re-absorption when there is dehydration.

Uric acid comes from the breakdown of purines. Some are present in our own cells, and so the natural recycling of the components of dead ones produces uric acid on a more or less continual basis and at a more or less elevated rate depending on how quickly cells are dying (the rate of ageing). Purines are also present in foods we eat and drink: mostly protein-rich foods and alcohol containing drinks like wine and beer. The more purines are present, the more uric acid is produced. All the uric acid needs to be eliminated. When the urine is too concentrated and acidic, however, uric acid cannot be dissolved and thus crystallises.

Creatinine is a breakdown by-product of creatine phosphate, an energy storage molecule used mostly in cells with fluctuating energy needs like those in the muscles and brain. Creatine is made from three amino acids in two steps: the kidney combines the arginine and glycine, and then the liver binds on methionine. Creatine is then transported in the bloodstream to muscles where it is made into creatine phosphate and back to creatine as needed. In the first few seconds of an intense muscular effort or brain activity, creatine phosphate can lend a phosphate group to ADP (adenosine di-phosphate) to form ATP (adenosine tri-phosphate, the energy currency of cells), and help supply the needed energy. Very conveniently, if later there is extra ATP floating around not being used, creatine will take back a phosphate group from the ATP molecule, leaving the latter as ADP, and storing the former for future needs as creatine phosphate once more. Creatine is eventually broken down to creatinine and must be completely eliminated by the kidneys. The need for and use of creatine phosphate depends primarily on muscle mass and level of activity.  Therefore, so does production of creatinine.

How does the kidney do what it does?

By filtering the blood. And the kidneys filter a lot of blood. About 25% of all the blood coming out of the heart flows through them. This is on average 1.2 litres per minute, which amounts to more than 1700 litres per day! Since there are 4-5 litres of blood in the body, it means that every drop goes through the kidneys about 400 times each day! Since the overall flow and pressure of the system must be maintained, only around 20% of the blood flowing through the kidney is filtered (that’s 240 ml/min and 340 l/day). The renal artery supplies the blood, and branches out into smaller arteries that also branch out into smaller arterioles all the way to the filtering unit. Because half of the blood volume is water, this amounts to 850 (1700/2) litres per day flowing through the kidneys. Filtering 20% means that 170 litres of water are filtered each day. Therefore, if one litre of urine is produced and excreted over the course of 24 hours (that’s pretty typical, unfortunately), it means that 169 out of 170 of these litres of water are reabsorbed: a reabsorption efficiency of 99.4% (169/170)! Producing two litres of urine eases this down to an efficiency of merely 98.8% (168/170). Now, that’s what we call high running efficiency.

But what does ‘filtering the blood’ actually mean and how is this done exactly? In each kidney there are about 1 million miniature filters called nephrons; they run from the lower part of the cortex deep into the pyramids. It is in the nephron that the blood is filtered and the urine produced in five main stages, first through Bowman’s capsule (1) and into the proximal convoluted tubule (2), then along the loop of Henle (3) and into the distal convoluted tubule (4), and finally out through the collecting duct (5) and into the ureter to the bladder. The filtrate and the concentrated blood course separately through the nephron only once on a one-way trip through the interstitial medium in which it is embedded in distinct but intertwined vessels. Along this winding course take place the delicate regulation of blood pressure, the filtration, the reabsorption of water and useful substances, the concentration of wastes into the filtrate that will become urine, and the regulation of water content and electrolyte balance. Here’s a description of how it works:

Stage one: Bowman’s Capsule    The blood coming into the nephron first enters a little spheroidal structure 0.3 mm in diameter (Bowman’s capsule) where about 20% of it is mechanically filtered to separate the fluid part called the plasma from the solids. It is ‘mechanical’ in the sense that it is pressure driven and based on particle size: smaller stuff like water, minerals, glucose and amino acids, together with the metabolic waste like urea and uric acid pass through, whereas large stuff like blood cells, proteins and fats do not. This is similar to how a water filter works: the water goes through the porous but densely packed carbon or ceramic block that stops most of the large particles like chemicals and metals, but allows the water to pass. And just as the filtering efficiency of a given filter depends on the pressure of the water supply, the filtering through the glomerulus in Bowman’s capsule depends intimately on the pressure of the blood supply. If the pressure is too low, the filtering is inefficient. But if the pressure is too high the delicate filtering structures are damaged. The pressure must therefore be just right for the circumstances, (the conditions being obviously very different when we are running and when we are sleeping).

Stage two: The Proximal Convoluted Tubule    The fluid moves from the capsule into the proximal (as in: close-by) tubule. The blood moves from the larger afferent (as in: towards) arteriole where the pressure is monitored before entering Bowman’s capsule, into the smaller efferent (as in: away-from) arteriole after passing through the glomerulus. It is now much thicker and more concentrated. Here, most of the water (about 65%) and almost all sodium are reabsorbed from the filtrate back into the blood, in addition to all of the glucose and amino acids, (none should end up in the urine), and some urea. If the pressure is even slightly lower than it should, the juxtaglomerular (as in: next-to-the-glomerulus) pressure-sensing cells in the afferent and efferent arterioles, secrete renin that flows into the bloodstream, and stimulates the release of angiotensin I from the liver, which is then converted in the lungs to angiotensin II, a powerful vasoconstrictor that promotes the contraction of the blood vessels to raise blood pressure, but also triggers the secretion of aldosterone in the adrenal glands, which in turn stimulates more reabsorption of water and salt in the nephron, also for the purpose of raising blood volume and pressure.

Stage three: The Loop of Henle    Most of the water and salt, and all the organic molecules like glucose and amino acids are reabsorbed from the filtrate back into the blood through a network of tiny blood vessels (capillaries) in the first part of the proximal convoluted tubule, straight after its emerging from Bowman’s capsule. From there, the vessel changes in shape and direction, and becomes what is named the Loop of Henle: a crucial element of the nephron that has a water-permeable descending limb and a water-impermeable ascending limb. As the filtrate travels down, water moves out because of the higher concentration of sodium in the embedding interstitial medium, and is reabsorbed by tiny capillaries back into the blood. The deeper it descends, the higher the sodium concentration grows, the more water comes out of the filtrate, and thus the more concentrated it becomes. As the concentrated filtrate travels back up along the ascending limb of the loop, it is sodium that is now pulled out, but this time by active transport through little pumps instead of by osmosis as for the water in the descending limb. This is necessary to recover as much sodium as possible and maintain the gradient of concentration of the interstitial medium in which the loop of Henle is embedded.

Stage four: The Distal Convoluted Tubule   The next leg of the trip—a very important one indeed—is through the distal (as in: distant) tubule. It is here that pH and electrolyte levels are regulated. It is also here that we find the chemo-sensing macula densa cells tucked in between the afferent and efferent arterioles, next to their pressure-sensing juxtaglomerular cells. Blood pH is regulated by either absorbing bicarbonate and secreting protons to increase acidity, or vice versa, (without a doubt the much more common alternative), by secreting bicarbonate and absorbing protons to make the blood more alkaline.  Sodium can be left to be excreted or it can be reabsorbed and potassium secreted into the bloodstream under the influence of the hormone aldosterone, and calcium can also be excreted or reabsorbed but in this case under the influence of parathyroid hormone or PTH.

Stage five: The Collecting Duct   The distal convoluted tubule is endowed with a system of collecting tubules to which is delivered the filtrate, (now practically urine), and that merge into the main collecting duct that carries the liquid to the ureter into the bladder. On this final stretch in the collecting duct through the interstitial medium of the nephron, a little more water can be squeeze out of the already concentrated urine. This, however, only happens in the presence of the very important hormone vasopressin (also called anti diuretic hormone or ADH), which is secreted when the body is dehydrated.

This amazing process takes place in millions of nephrons tightly packed and organised in each of the two kidneys, continuously throughout the day and night, from the moment the kidney starts to work in the not yet born child, to the moment we die, either from kidney failure or something else. And to appreciate just how amazing it really is, consider this back-of-the-envelope calculation: 1 million nephrons are packed into 7 pyramids makes about 150 000 per pyramid. Taking a pyramid to be a cone with a base of 2 cm in diameter gives a surface area for the base of about 3 cm squared (Pi*R^2, and R=1). Dividing 150 000 nephrons by this surface area in which all of them must be packed gives a density of 50 000 nephrons per squared cm. Since there are 100 squared mm in 1 squared cm, this makes a density of 500 nephrons in every square mm over the surface of the base of each pyramid, and remember that they must all squeeze in together even more as they penetrate towards the tip of the pyramid and its collecting calyx. Can you even imagine how small this is, without even considering the incredible complexity with which it all works? Gray’s Anatomy states that the thin part of the Loop of Henle is 30 microns in diameter, whereas its thick part is 60 microns, and it is safe to assume that most tubular parts of the nephron are probably also in this range. This is truly amazing. But appreciating this, we can also appreciate how incredibly fragile each nephron must be. And by the way, once a nephron is dead, it’s dead forever.

Now, blood pressure is intimately related to blood volume (amount of water in it) and blood osmolarity (the concentration of solutes, mostly sodium, and to a lesser extent the other electrolytes as well as glucose). Maintaining these in balance is essential to the functioning of everything in the body. For this reason, there are pressure sensors throughout every blood vessel, and osmolarity sensors in the hypothalamus of the brain, as well as highly sensitive sensors of both kinds in the kidney itself. A drop in volume sensed by the pressure sensors in the blood vessels, or a rise in solute concentration sensed in the hypothalamus, will trigger the release of vasopressin from the pituitary gland. Vasopressin will signal the kidney (the collecting duct) to release more water for reabsorption into the blood stream, in order to counter the drop in blood volume and rise in solute concentration. Vasopressin, just as angiotensin, will make the blood vessels constrict and tighten to maintain the blood pressure constant. It will also stimulate the secretion of glucose from the liver in case fast reaction times become necessary, as well as clotting factors and platelets to make the blood thicker and stickier, and prevent excessive blood losses in case of injury. All of these are part of the standard stress response. Vasopressin will also stimulate the secretion of the stress-induced adrenocorticotropic hormone or ACTH that will act to reinforce all of the above in what will amount to a heightened stress response.

Dehydration—especially chronic dehydration—is probably the greatest source of physical stress in most of us. We, unfortunately, tend to live our lives completely oblivious to this fact, and therefore suffer the consequences a little more acutely with each day that passes.

What we need to do

Although all of this is in many ways awfully complicated, what we need to do to make sure the kidneys function properly is quite simple: drink more water, take more magnesium and less calcium, alkalise the body and its tissues.

More water   This is by far the most important: proper hydration by drinking plenty of water—not fluids in general, just plain water—especially in the morning when the body is most dehydrated, before eating anything, and then before each meal.

Imagine what would happen to a water filter if the incoming water were just slightly cloudy with dissolved clay particles? It would work, but over time, (obviously faster than it would in the absence of clay), it would get clogged up. Now, what if there were more fine clay particles? The filter would get clogged up faster given that its role is to stop and store the particles so that the water coming out can be clean and clear. But in addition to that, because the incoming water would necessarily be thicker and more viscous, the filter would not work as well under the same pressure. To work properly it would need a higher pressure to help push through the more viscous water, but this higher pressure (if it could be adjusted upwards) would inevitably stress the filtration system as a whole and thus shorten its ‘life’. What if, in the extreme, the incoming water were really thick, brown and muddy? It’s pretty simple: no water would make it out of the filter because it would instantly clog up.

This analogy is definitely not exact but it is clear and adequately illustrative. To function well, the kidney needs the right blood pressure, blood flow, blood volume, blood viscosity and osmolarity (concentration). As soon as either pressure, volume or sodium concentration drops, the renin-angiotensin-aldosterone is activated and reinforced by the stress response related to secretion of vasopressin (anti diuretic hormone), all acting to constrict the blood vessels, make the blood more viscous and increase reabsorption of both water and sodium to re-establish a functional equilibrium. Imagine now this thick, viscous, sticky blood going through the exceedingly fine arterioles and capillaries in the nephron, and the difficulty with which wastes would be filtered out and dissolved in the water that should be available but isn’t. Now, picture this happening throughout the 24 hours of the day, week after week and year after year. It’s no wonder kidney problems are so common!

So, at the very least we should drink one litre before breakfast and 500 ml before each of the other two meals, allowing each time 30 minutes for the water to be absorbed into the digestive system and then into the blood before eating. It is better to drink more than this, always on an empty stomach, and to take enough unrefined sea salt to match our water intake. Doing this is already enough to ensure proper kidney function and elimination of the bulk of the metabolic wastes through the urine, preventing in this way the formation of kidney stones.

More magnesium and less calcium   The formation of calcium stones is more than obviously related to the fact that we are all in general over-calcified and vitamin K2 deficient, consuming way more calcium than the magnesium and not enough vitamin K2 needed to keep that calcium from settling and crystallising in our tissues, blood vessels, joints, and kidneys. Therefore, to avoid calcification we must avoid over-consuming calcium, and we must supplement with magnesium and vitamin K2. This will also, over time, dissolve existing calcium stones and other sites of calcification in soft tissues.

More alkaline and less acidic   The kidney’s main purpose is to excrete acidic wastes by dissolving them in water. But all digestive and metabolic wastes are acidic, and there are many sources and forms of acid wastes that all contribute to increase the overall acid load on the body. In particular, refined sugars and protein. The heavier the load, the more acidic the blood becomes. Since the blood must remain alkaline, the acid can be eliminated, neutralised or stored in tissues. All three lines of defense are used: the kidneys try to eliminate as much as possible, alkaline minerals like calcium, magnesium and potassium are pulled out of the bones to neutralise blood acidity, and excess acid is stored away in tissues. Everything is done to take it out of circulation. The more acid is stored, the more acidic the tissues become. And the more acidic the body is, the less is its alkalising potential and the harder it is for the kidneys to dissolve and eliminate the acid that should be eliminated on a continual basis. There are fundamental physiological arguments that explain how tissue acidosis is at the root of literally every health problem and disease, (I will write about this more specifically on other occasions), but even without any further considerations, the only sensible conclusion is that the less acid-forming foods and drinks we ingest, the healthier the tissues, the kidneys and the body will be.

The most strongly acid-forming foods are refined sugars. Next are meats, eggs and milk products, then flours, grains and starches. The most strongly alkaline-forming (acid-neutralising) foods are raw and green vegetables, especially salads and leafy greens, as well as watery vegetables like cucumbers and celery. The more chlorophyl, the more alkalising. Parsley, basil, cilantro and all grasses are therefore alkalising and cleansing superstars.

Looking beyond single foods we find that certain combinations make the results indigestible and thus promoting of either putrefaction (protein with sugars or starches) or fermentation (simple sugars with most everything else). Both of these lead to the formation of a lot more acid waste in the digestive system a great part of which ends up the bloodstream. Adopting an alkaline diet will very quickly help balance blood pH and promote maximum excretion of acid wastes. Over time, this will allow the body to not only recover proper digestion and elimination on a meal-per-meal and daily basis, but also to eliminate acidic wastes stored in our tissues throughout the body, thus ridding it of aches and pains, the potential for chronic inflammation or infection, as well as for more serious degenerative diseases like arthritis, cancer and multiple sclerosis, for example.

Last words

And finally, to stop taking so many things for granted is simple. We just need to pay attention to the details of our life and allow ourselves to be surprised, intrigued, inspired, and amazed by what we encounter. Nothing more. We need to open to how things present themselves, and just feel sensations with the actual feeling of the hands and fingers, of the feet and toes, of the belly, the chest, the back and neck. Really feel what is felt: the glass in the hand, the water in the mouth and then flowing in the throat and into the stomach. Actually see what the eyes are seeing: not things but forms and colours, light and dark, space and expansiveness in all directions. Actually hear what is heard in the whole space of hearing. This is how we can stop taking things for granted. Just paying attention to our life with our life. That’s all.

If you want to read more about water, salt and kidney function you can read How much salt or how much water? For more information about the importance of water in digestion and health read Why we should drink water before meals and Water, ageing and disease. For more on calcification, the importance of minerals in general and magnesium in particular, you can read Minerals and bones, calcium and heart attacks, Why you should start taking magnesium today and Reversing calcification and the miracle of vitamin K2 For more on the importance of proper hydration in treating chronic inflammation read Treating arthritis I: super-hydration, alkalisation and magnesium.

If you enjoyed reading this article, please click “Like” and share it on your social networks.

Two articles that changed my life

Two days ago, on October 23, I turned 40. For me, it feels different than every other birthday I have had: it feels like the marker of the transition between what can be considered young adulthood from 20 to 40, and middle adulthood from 40 to 70, which is then simply followed by old age. Maybe this is also linked to the fact that from the time I started competing, first in running track and field, then in road cycling, duathlon (running and cycling), off-road cycling and eventually in long distance running, I have always been in the normal, standard 18-40 category (like almost everyone else, I thought). And now, starting with my first race in the first level Seniors from 40 to 50 a couple of weekends ago in Bordeaux at the Ariane Cross 2012, I am definitely, and will be for the next 10 years, in the over 40 category. So, I have been reflecting a little on the past and the future: What is really important to me, what have I done and accomplished, what do I want to do in the future and how can I get there? Simple questions whose answers are not so simple.

In this context, I want to share two articles that completely changed my life, and completely changed my state of health, in some respects, rather suddenly, and in others, gradually over the years. Interestingly, I stumbled upon and read them both in the same week almost exactly five years ago. I won’t summarise, discuss their contents, nor describe the positive effects the simple but radical changes in dietary habits they prompted me to instil have had on me, on my wife Kristin and on our son Laurent. I simply encourage you to read them for yourself, and sincerely hope they will benefit you as much as they have us, and, I am sure, everyone who has ever read and applied the information they contain to their diet.

What is clear to me now much more than it has in the past, is that no matter what information we are presented, its impact depends entirely on how receptive we are to it. And this depends on all of what we know and think we know, on how we understand the connections between everything we have been exposed to, on our habits and tendencies, on previous experiences throughout our life, and very importantly, on the circumstances that form the context in which the information is brought to our attention. Thus, let me hope that these two articles come at a time that is ripe for you to appreciate their importance in regards to your own health, that of the people you care about, and everyone else for that matter.

The two articles are Insulin and Its Metabolic Effects by Ron Rosedale, MD (you can get the pdf here), and The Skinny on Fats by Mary Enig, PhD (get pdf here). After reading them, please consider sending this link to those you know who will or even possibly appreciate it. As you will see from the few case histories at the start of Rosedale’s presentation, the question of understanding and controlling insulin can really be a matter of life or death.

Healthy and lucid from childhood to old age

So you’ve been around for 70 years, and you’re still well enough to read this. Have you actually made it past 75, 80 or even 85? This is really great! Through a combination of different factors, various reasons, personal habits and choices, you have made this far.

Maybe because of your genetic makeup: Your parents and grand-parents all lived well into their 80’s or 90’s by following a kind of innate, traditional wisdom based on the understanding that we really are what we eat, in a very real sense, and you’ve done more or less the same, following in their footsteps.

Maybe because you have always been moderate in your eating habits: You’ve never been overweight; you’ve never eaten much sweets or deserts; you’ve never eaten much preserved meats and canned foods; you’ve never drank much alcohol; you’ve never drank sweetened soft drinks, juice or milk—mostly just water, always paying attention not to drink too much coffee or strongly caffeinated tea.

Maybe you have made it this far because you have also been moderately active throughout your life, never exercising too much or too intensely, but always quite regularly: Walking; doing light exercises for your joints (rotations of the arms for your shoulders, stretches for your neck and back, and exercises for your knees); riding a bike a couple times a week in the good season, not getting off the bike but instead riding up those hills; maybe you went skiing a week or two most years; went for long walks or even hikes in the mountains during holidays; or did a little swimming in the sea or in lakes when the occasion presented itself.

The golden middleas my grand-father called it: everything is moderation. And he almost made it to 90 years of age! But no matter what the reason is, it is truly wonderful that you have indeed made it this far. Then again, you might be young or middle aged, but interested—maybe somewhat, maybe highly, but nonetheless interested—in being healthy and lucid for as long as possible, and hopefully well into your old age.

Either way, young or old, you live in this modern world like most of us. You live in a city, you drive a car, you work in an office, you fly or flew often on business trips, maybe even several times per week. You eat meat and fish; bread, potatoes, rice and pasta; fruits and vegetables, all from the supermarket.  And so you have, throughout your life, been continuously exposed to increasing amounts of chemicals, heavy metals and various other toxins in our environment, most of which have been accumulating in your tissues. You live in the modern world like most of us, and so you have taken medication on various occasions during your life: antibiotics a few times, maybe some pain killers, maybe some sleeping pills, maybe simple anti-histamines when you had a cold. Maybe you are and have even been taking medication on a daily basis for some “minor” but “chronic” condition.

You live in this modern world and so you have been told to drink plenty of fluids and that salt is bad and should be avoided. You’ve been told that fat in general, but especially saturated fats and cholesterol, are bad because they cause heart disease: they cause your arteries to clog up with fatty plaques that eventually block them to give you a heart attack. You’ve been told to avoid them as much as you can, and instead to consume polyunsaturated vegetable oils, plenty of whole grains and cereal products, legumes, plenty of fruits and vegetables, and so you have done that: you have decreased or almost eliminated your intake of butter, eggs, fatty cheese, fatty yoghurt, red meat—never ever eating the fatty trimmings, and also of the fatty skin on chicken or fish.

Consequently, you have increased your intake of morning cereal—but only sugar-free whole grain cereal like muesli; increased your intake of bread—but usually whole grain bread; increased your intake of rice—but usually brown rice; increased your intake of pasta—but usually also whole grain pasta; and increased you intake of potatoes—but never fried, only baked, steamed or boiled potatoes.

Maybe your total lipoprotein levels are around 220 or 240 mg/dl, and you have been told that this is too high, and for this reason you have tried to further reduce your fat intake, and are even taking statins or other cholesterol-lowering drugs, every day, just like hundreds of millions of other people in this modern world.

Unfortunately, you have not been told that you should be drinking water; not fluids in general, and that there are many reasons water, ageing and disease are intimately connected—the lack of water, that is. In addition to that, you have not been told that it is not enough to drink some water sometimes: it is essential to drink water before meals. Unfortunately, you have not been told that sodium is one of the most important minerals for health: why else would the kidneys, without which we cannot live for more than a few days, go to such great lengths to prevent its excretion in the urine, and keep it in the blood if it wasn’t? But even more unfortunately, you have not been told that minerals in general, are essential for health, and that unrefined sea salt contains all naturally occurring trace minerals is proportions that closely match those of several of our bodily fluids. And that furthermore, proper bodily function depends intimately on the balance of the minerals available, and that our salt-phobic and calcium-phillic society has led to most of us becoming completely over-calcified while growing more and more deficient in the rest of the trace minerals, and in particular magnesium. The link between generalised magnesium deficiency and minerals, ageing and disease are now everywhere painfully obvious.

Unfortunately—and indeed very sadly—you have not been told that cholesterol is absolutely vital for life and good health: that it forms the membrane of every single cell in your body and in that of every animal, that your entire nervous system and especially your brain are built using cholesterol and depend intimately on the availability of plenty of cholesterol, that your hormonal system relies completely on cholesterol for building hormones, and that your best defences against infectious and inflammatory pathogens are in fact the lipoproteins carrying around the precious cholesterol throughout your body. You have not been told that cholesterol is so important that it is manufactured continuously by our liver to keep up with the body’s needs, and that therefore, the cholesterol we eat does not in any ways raise lipoprotein concentrations. You have not been told that in addition to cholesterol, fat is also essential for building hormones, essential for absorbing minerals from the intestines into our bloodstream, essential for the binding of these minerals into the bones and teeth, essential for energy production in every cell of our body.

Furthermore, you have not been told that saturated fats like those found in animal products and coconut oil are molecularly stable, whereas unsaturated and particularly polyunsaturated oils such as those that make up all vegetable oils are molecularly unstable, some more than others, for the double bonds between carbon atoms in the chain that forms the fat molecule are weak and readily broken to permit some other unstable molecule seeking a free electron to attach in order to make the final molecular configuration stable. But that those unstable compounds are actually scavenging around for any electron to bind to, and unfortunately most of the time if not always, these free-radicals will attach themselves to healthy tissue without proper enzymatic action to guide them in the proper place and position, thus damaging our tissues.

In fact, you have not been told that all large studies that have been conducted to evaluate the “health-promoting” properties of polyunsaturated fats have not only failed to do so, but instead have shown that the more polyunsaturated oils we consume, the more atherosclerotic plaques develop in our arteries, and therefore the more likely we are to suffer a heart attack or stroke. And that on the contrary, the more saturated fats we consume, the less plaques we have, and consequently, the less likely we are to have a heart attack or a stroke (see any of the books about cholesterol in Further readings).

You have not been told, that for millions of years our species has evolved consuming most of its calories in the form of saturated fats from meat and animal products—in some cases exclusively from these, from coconut and palm oil (where these grow), and to a much lesser extent from polyunsaturated fats, and this only in whole foods such as fish, nuts and seeds—never concentrated into vegetable oils.

Unfortunately—and indeed very sadly—you have not been told that we were never meant to eat simple or starchy carbohydrates: that eating such carbohydrates always triggers the pancreas to secrete insulin in order to clear the bloodstream of the damaging glucose in circulation, that chronically elevated glucose levels lead to chronically elevated insulin levels that in turn lead to insulin resistance—first in our muscles, then in our liver, and finally in our fat cells—which leads to type II diabetes, to heart disease from the buildup of plaque in the coronary arteries and vessels, and to Alzheimer’s and cognitive degradation from the buildup of plaque in the cerebral arteries and vessels.

Unfortunately—and indeed very sadly—you have not been told and have not considered that all the multitude of chemicals and heavy metals that we are exposed to in the medications we take, in the air we breathe, in the water we drink, in the food we eat, in the soaps and shampoos we use, and in the household products we employ to keep our house sparkling clean and bacteria-free, accumulate in our bodies. They accumulate in our fat cells, in our tissues, in our organs, in our brains. They burden, disrupt and damage our digestive system, our immune system, our hormonal system, our organs, tissues and cells. Sometimes they reach such concentrations that we become gravely ill, but none of the doctors we visit in seeking a solution and relief understand why. Most often, however, we don’t get gravely ill but instead start developing different kinds of little problems: we get colds more often and take longer to recover, we get mild but regular digestive upsets that we can’t explain and that seem to get worse with time, we get headaches and have trouble sleeping, we feel depressed, tired, alone, helpless, not acutely but enough to disturb us enough that we notice it.

Finally, and maybe most importantly, you have not been told how truly essential vitamin B12 really is, but how, for a variety of different reasons, blood concentrations B12 decrease with age, and eventually dwindle to very low levels. That B12 is essential most crucially to preserve the myelin sheath that covers all of our nerves healthy, and thus crucially important for everything that takes place throughout the nervous system, which means, everything in the body and brain. Levels of B12 should never go below 450 pg/ml, and ideally should be maintained at 800 pg/ml throughout life, from childhood to old age hood.

Can we do anything about all this?

The most fundamental point to understand is that everything about your health depends on the state of health of your digestive system. All absorption of nutrients and elimination of waste happens in the digestive system. Since our health depends on proper absorption and efficient elimination, the digestive system should be our first as well as our main concern.

The first step is to rebuild and establish a healthy intestinal flora of beneficial bacteria (breakdown and absorption), and at the same time begin to detoxify the body and clean out the intestines (elimination). This is done by taking high quality probiotics to supply beneficial bacteria on a daily basis, high quality chlorella to both supply a lot of micronutrients and pull out heavy metals, and water-soluble fibre like psyllium husks to clean out the intestines by pushing out toxins and waste products. If you are not already taking these, read Probiotics, chlorella and psyllium husks.

The second step is by far the most important, and in fact, crucial dietary change necessary to achieve optimal metabolic health. It is to eliminate simple and starchy carbohydrates from you diet, and replace them with more raw vegetables—especially green and leafy salads and colourful vegetables such as red and yellow peppers, more nuts and seeds—especially raw and soaked, more good and efficiently absorbed protein—especially eggs, fish and raw cheeses, and much more saturated fats—especially coconut oil (at least 3 tablespoons per day) and butter. Doing this is  essential for the systemic detoxification, rebuilding and then maintaining a healthy digestive system. Everything should be organic: you obviously don’t want to be adding to your toxic load while trying to detoxify.

And the third step is to supplement our now-excellent, health-promoting diet with a few essential and very important nutrients that are, for most of us, difficult to obtain. The only such supplements that I believe to be essential, and that my family and I take daily, are: Vitamin B12 and vitamin D3—the most important supplements to take for overall health, but in which we are almost all deficient; Krill oil—a high-quality, animal-based omega-3 fat with its own natural anti-oxidants, highly absorbable, and particularly important for proper brain function; Ubiquinol—the reduced and thus useable form of coenzyme Q10, critical for cellular energy production, and a powerful lipid-soluble anti-oxidant that protects our cells from oxidative damage, but both of whose synthesis as CoQ10 and conversion from CoQ10 to ubiquinol drop dramatically after about age 30-40; Vitamin K2—essential for healthy bones but very hard to get other than from fermented foods, which we typically eat little of.

In addition to these, we usually always take Astaxanthin and turmeric—very powerful antioxidants with amazing general and specific anti-ageing health benefits, and also sometimes take a whole-foods-multi—basically dehydrated vegetables and berries made into a powder and compressed into a pill for extra micronutrients. (You can read about all of these supplements on Wikipedia or any other page you will find by doing an internet search.)

I tend to buy our supplements from Dr Joseph Mercola, (whose website also provides a lot of info about these and other supplements, as well as about a multitude of other health-related issues and conditions), because I trust that his are among if not the best on the market: there’s really no point in buying cheap supplements at the pharmacy, and risking doing yourself more harm than good, as would happen with a rancid omega-3 supplement, or a synthetic Vitamin D, for example.

Staying healthy and lucid is, in reality, quite easy and simple. Unfortunately, most of us, including, and maybe especially our medical doctors, just don’t know how. And so, medical diagnostic and high-tech treatment technologies continue to improve and develop, and medical expenditures continue to rise throughout the modern world, but we are sicker than ever: more obesity, more diabetes, more strokes, more heart attacks, more cancers, more Alzheimer’s, more leaky guts, more ulcers, more liver failures, more kidney failures, and on and on. There is more disease, more pain, more suffering and more premature deaths. And all of it is completely unnecessary and avoidable by such simple and inexpensive means as those outlined herein. The only critical point is that only you can do it; nobody else can do it for you.