Keto-adaptation for optimal physical performance

A young man I know recently started to play rugby at a higher level, and thus more seriously than he ever has in the past. Being a smart guy, he wants to get his nutrition “on point”, as he writes, in order to perform at his best. He started reading about nutrition on the internet, and found it to be like “a snake oil convention”, which it most certainly is. So, he contacted me to get my opinion on the subject. I’ve been meaning to start writing about training and performance for a while, and balance out all my writings about disease and overcoming disease conditions, and so I thought this would be the perfect opportunity to start.

The first thing that needs to be said is that there are common aspects as well as differences in the way training and nutrition should be optimised for different disciplines and goals. In common to all disciplines, are that we always want to perform at our best, and recover as fast as possible. Those are the basic and most fundamental drivers.

Differences are much greater in number and far wider ranging in kind, but they can include core aspects like the duration of the event: speed and power versus endurance and stamina (think of the 100 meter dash versus the marathon, or the velodrome cyclist versus the Tour de France rider); the kind of effort required: sustained versus bursty (think of rowing versus tennis); the medium and nature of the forces against which we are working: water or air, with an intervening machine or without (think of swimming versus jumping towards the rim to slam dunk the basketball, skying versus bobsledding, wrestling or judo versus Formula 1 racing).

In every case, there are preferred and optimal skills and trained reactions, fitness and body composition, as well as morphology and muscular development. For now, let’s just look at the basics in the sense of what every athlete would want and would benefit from no matter what kind of activity they do: best performance and fastest recovery.

The most fundamental point is mitochondrial energy production

At the root of all activity of the body, and at all levels, is the generation of ATP by mitochondria. This is really the bottom line for everything, because this is what cells use to function and do what is required of them in every instant. Mitochondria, small organelles thought to have migrated into a cellular membrane early in the history of evolution of life on the planet, are present in every cell in different amounts, and are essential for life. They can oxidise or burn any macronutrient—glucose, amino acids, or fat—to produce ATP, but the bulk is derived either from glucose or fat. In the process, they produce byproducts of different kinds and in different amounts based on the nature of macronutrient used for fuel, and on the energy demands. Therefore, for optimal performance with a fixed number of mitochondria, we want:

  1. the maximum efficiency in ATP energy production, and
  2. the minimum amount of metabolically taxing byproducts.

These question of deriving the most amount of ATP in the most efficient way with the least amount of byproducts that ultimately impede physiological function, has been considered in On the origin of cancer cells (1 and 2)To summarise in very few words: fatty acids are the most efficient way to store energy, on a gram-per-gram basis they produce the most ATP when oxidised by the mitochondria in an oxygen-rich environment, and their oxidation result in the least amount of acidic and physiologically costly byproducts. Therefore, the inevitable and obvious conclusion, is that for optimal physical performance, we want maximum metabolic efficiency, and for maximum metabolic efficiency, we need to provide the conditions that allow our cells to use fatty acids as their primary source of fuel.

The key is efficient fat utilisation

Efficient fat utilisation is achieved in three stages, which are really just two, because the second and third blend into one another seamlessly. The first step is making sure cells can use fat as fuel. Because insulin signals cells to store energy, it prevents fat utilisation (lipolysis). Inhibiting lipolysis is one of insulin’s main functions. To allow cells to burn fat, insulin must be low. To lower insulin levels, we must either fast, or restrict carbohydrates (and to a lesser extent protein). In fasting conditions, most people will reach insulin levels low enough to start fat-burning after 12 to 16 hours. With severe carbohydrate and protein restriction, that means getting all or almost all of your calories from fat, the timescale is probably similar.This first step is therefore achieved within 24 to 48 hours.

The second step is basic adaptation to deriving cellular energy needs from fatty acids, those that we eat, and those that are stored within the body’s fat cells (adipocytes). This is achieved over the course of about 4 weeks by maintaining a very low carbohydrate, low to moderate protein, and high fat diet.

The third and last step is full keto-adaptation, achieved within two to four months of consistent carbohydrate restriction. The word keto in the term keto-adaptation refers to the fact that, from the breakdown of fats, the liver manufactures ketones, the one we measure as a marker is usually beta-hydroxybutyrate, used primarily to fuel brain cells that can only use glucose and ketones. This stands in contrast to most other cells that can use fatty acids directly. An exception to this—the only one, as far as I know—are red blood cells that can only use glucose.

A point that needs to be appreciated relates to the potency of insulin to stop fat-burning. As soon as glucose spikes, insulin will spike, and will stop fat-burning. This is particularly important if we are aiming to burn as much fat as possible or become as efficient fat-burners as possible. Consequently, the very worst thing we can do is to have sugar in the morning, just before or just after training. Even a small piece of fruit will do it. This will generally always stop fat burning in its tracks. And not just for a few minutes, but for hours, all the hours necessary for insulin levels to drop back down low enough to allow lipolysis to start again.

Maximally efficient fat utilisation is where an athlete wants to be, because this will ensure that they always use as much fat and as little glucose as possible, maximising endurance potential while minimising production and accumulation of lactic acid in the muscles. The most important benefits this brings are to be able to sustain long hours of exercise without “hitting a wall” from the exhaustion of glycogen stores, and having muscle fibres that can function smoothly unimpeded by the presence of large amounts of lactic acid, something which also significantly accelerates recovery, as very little time is needed to clear out the small amounts that remain in the muscle after the event or training session.

Fat stores are, for practical purposes, inexhaustible. Even in very lean athletes (below 10% body fat), there will be between 5 and 10 kg of fat reserves to draw on during that ironman, that ultra-marathon, or that mountain-bike-around-the-clock event. Each gram of these 5-10 kg provides 9 kcal of fuel. And so, that endurance event lasting 12 hours during which you burn 7500 kcal could be fuelled with just 830 g of body fat. Naturally, this would not happen, because glycogen from the liver and the muscles will always be used in greater or lesser amounts depending on the level of stress (physiological and psychological), and intensity of the exercise. Nonetheless, this is a good illustration of the massive reservoir of fuel we have at our disposal if we train the body to utilise fat efficiently.

montBlanc-ultraMarathon

The Mont Blanc ultra-marathon. All long distance runners should be keto-adapted.

To get to this point, the muscle cells need to be trained to use fat, first at very low intensity to make sure that they can fuel the activity using mostly fat, and then gradually increasing the level of intensity to force adaptation in continuing to burn fat as the primary fuel. Best way to achieved this, is by doing low intensity endurance work in a fasted state. And over time, gradually extending duration and increasing intensity.

Moreover, doing intense, muscularly demanding, resistance training in the fasted state, is beneficial in many additional ways, including the secretion of greater amounts of growth hormone and testosterone for better growth and repair of tissues, as well as more effective fat utilisation, and protein recycling, which involves the breakdown of damaged, scarred, and otherwise unused tissues in order to maintain, feed and rebuild the muscle tissues that are being used. The same mechanisms involved in protein recycling, act to preserve muscles that are active, while facilitating the breakdown of other tissues, and in particular fat stores, that are not.

There are many benefits to training in a fasted state, and doing both low intensity endurance, as well as high intensity resistance training. This is especially true over the long term, as the body becomes increasingly more efficient at fat utilisation, increasingly better at preserving active muscle mass, and increasingly more effective in repairing damaged tissues and cleaning out metabolic wastes. Such conditions are naturally highly favourable for building strong, healthy, lean muscle mass.

Fast recovery requires minimising inflammation

Whenever we do anything physical, some level of micro tears, fractures, and injuries to the muscle and bone tissues take place. The body’s repair mechanisms involve an inflammatory response. Without a healthy inflammatory response, we would not be able to recover from injuries, recover from training, or build bone or muscle mass. In fact, we would not be able to survive. What we want, is a fast and effective inflammatory response to heal, repair, or build whatever needs fixing as quickly as possible. What we do not want is a low-level of chronic inflammation that cripples the body from functioning at its best.

One of the greatest advantages of running on a fat-based metabolism with maximally efficient fat utilisation, is the fact that the muscle cells are fuelled by burning fatty acids without producing lactic acid. This is in stark contrast to a glucose-based metabolism, where most of the energy is derived from burning glucose, and this always produces lactic acid. As intensity increases, the amount of lactic acid produced will depend first on the intensity, and second on the level of keto-adaptation. The better the keto-adaptation, the more fat will be used to fuel the cells at higher levels of intensity. But, no matter what, the keto-adapted individual, and the athlete in particular, will always, and in all circumstances, produce less lactic acid than the one running a glucose-fuelled metabolism.

All acidic metabolic waste products need to be eliminated from the body. This is the role of the kidneys, whose function we have explored in The kidney: evolutionary marvel. For lactic acid that accumulates in the muscles, the first stage is to get it out of the muscle, and this usually takes quite a while. It can take from hours up to several days. The process of clearing it out can be accelerated using massage, stretching, and very low intensity exercise. Alkalising baths are a fantastic therapy for accelerating recovery, and lowering inflammation. Magnesium chloride and sodium bicarbonate baths are therefore an absolute must for the serious athlete. We have detailed the importance, roles and functions of magnesium in Why you should start taking magnesium today, and discussed inflammation and the importance of alkalisation in Treating arthritis (1 and 2). 

In the end, all metabolic acids lead to increased inflammation, and, when they accumulate in joints and tendons, inevitably to injury. Insulin-stimulating carbohydrates also cause inflammation. They trigger hundreds of inflammatory pathways. And so, by eliminating them from our diet, and allowing the metabolism to run on fat, we have done as much as we could ever do with our food to minimise inflammation in the body. This is what an athlete wants for the fastest possible recovery time, with best training performance, and the smallest risk of injury.

The final and most important element for fast recovery and low inflammation is optimal hydration. This is the most important because all of the body’s cleaning mechanisms, and especially the function of the kidneys, depend intimately on water and salt. Drink alkaline water on an empty stomach—at least 3.5 litres per day. Eat plenty of salt with all your food—at least a full teaspoon. The more you sweat, the more water, and the more salt you need. We looked in detail at how much of each is optimal in How much salt, how much water, and our amazing kidneys.

When do we eat?

If we train in a fasted state, the best is to train in the first part of the day, taking advantage of the fact that the fast has already lasted 12 hours or so. We can rather easily extend that further, and train around noon, following about 16 hours of fasting. Either way, we will want to eat between one to two hours after training, allowing a good amount of time to make sure the body is well hydrated, and stress levels have dropped. This will bring us to having our first meal of the day somewhere between 12:00 and 15:00. Different people have different schedules and preferences depending on the rhythm of their work and personal life. There are no hard rules, and things have to remain flexible, as irregularity is also an important part of training the body to be more adaptable. In fact, you should be somewhat irregular with your schedule for just this reason.

We can have only one meal per day, or we can have two, or we can have one big meal and some snacks, or, best of all, we can sometimes have one meal, sometimes two meals, sometimes have snacks, and sometimes not. The main point in training the body for optimal metabolic efficiency, is to be a significant amount of time, somewhere between 12 and 20 hours, without eating, and to train in a fasted state, in conditions of low blood sugar and low insulin levels. We discussed intermittent fasting in The crux of intermittent fasting, concluding that one of the most important points for successful and effective intermittent fasting is that the body be fuelled by fat and not by glucose. As you will have gathered by this point, our context here relies on the fact that the body is keto-adapted, and therefore, fuelled by fat.

What do we eat?

That was the original question my friend wanted answered, and it is, in a way, very simple to answer: we eat only the least contaminated, least processed, and least insulinogenic, the most natural, most nutrient dense, and most digestible.

Least contaminated means minimising our body’s exposure to toxic substances, heavy metals, hormone disruptors, pesticides, herbicides, chemical additives, anything that is toxic in one way or another. Least processed means minimising manufactured foods, of which we don’t need any. Least insulinogenic means minimising foods that stimulate the secretion of insulin from the pancreas, and this means minimising intake of simple sugars and starches, and not over-eating protein which is about half as insulinogenic as carbohydrates.

Most natural echoes least contaminated and least processed, but additionally implies a freshness, a wholesomeness, an absence of adulterations and manipulations. That’s what we want. Most nutrient dense means maximising mineral content, vitamin content, optimising amino and fatty acid profiles, and overall micronutrient content for a given amount of calories. Most digestible means minimising digestive stress, maximising enzyme content and nutrient absorption.

Digestion, the function and health of the digestive system, is essential. Everything from the food we eat is made available and usable—or not—by and through the digestive system. We have written about digestion on many occasions, but most specifically in Understanding digestion, Intensive natural healing, and Why we should drink water before meals.

But in practice, what do we eat? No junk of any kind. No polyunsaturated oils. No sweet things. No starches. Excellent animal foods and excellent plant-based foods: grass-fed, full-fat meats and organ meats like liver; nutrient dense and non-toxic fish like sardines, herring, anchovies, seafood and wild fish (avoid tuna, swordfish and any other large predatory fish, because they contain large amounts of mercury and other heavy metals); fatty nuts and seeds, especially coconut products, but also walnuts, macadamia, almonds, hazelnuts; dark leafy greens, both in salads (mixed baby greens, baby spinach, arugula, lamb’s lettuce, lettuces of all kinds) and steamed (chard, spinach, and anything similar); green vegetables like celery, cucumbers, broccoli, asparagus, and string beens; colourful vegetables like purple cabbage, red and yellow peppers. You can eat pretty much anything you can think of that is not processed, nutrient poor, or highly insulinogenic.

What should you have for breakfast? We already solved that problem! You do not eat breakfast anymore, remember?

What do you have for lunch after training? You’re in a rush or just lazy? Well, make yourself a coconut milk smoothy. You can put some protein powder (whey or plant-based, but never soy!), some superfood powders, some hemp or chia seeds. You prefer it sweet-tasting? Put some raspberries or blueberries, and stevia extract. You prefer it green and salty? Put some spinach and salt. In both cases, you can add avocado whenever you want. You can make it with cacao powder, with vanilla extract, or with almond extract. You can add raw or roasted almond or hazelnut butter, sunflower seed butter or tahini. Anything you want that is wholesome and healthful. You’ll need to experiment to find combinations you like. Start simple with few ingredients, and add things bit by bit to keep on top of the process and the blends of flavours.

If you’re not in a rush, or don’t want to have a smoothie? In this case you eat exactly as described above: healthy, nutrient dense animal and plant-based foods. This can be as simple as a can of sardines with a bag of organic baby greens. And for supper, the same as for lunch, really. The same simple and basic principles apply to everything you eat at all times, with these two additional points to keep in mind:

The first is that because we do not eat for a significant part of the day, and also because we eat either just one or two meals, it is crucial to get enough calories and fat, nutrition and protein. Otherwise, we will quickly find ourselves in calorie deficit, and this means that if we keep it up for a long time, we will first burn through our fat reserves, and then burn through our muscles. As athletes, we definitely do not want this. So, it is very important to get all the calories we need, especially if we train a hard or long hours on a daily basis.

The second is that for good, deep and comfortable, restful and restorative sleep, we shouldn’t go to bed on a full stomach, and most importantly, not on a stomach full of protein. Digestion is energy intensive. In the case of protein, it is also highly thermogenic, which means that it generates heat. Therefore, going to bed after a large protein meal will  lead to a restless, tossing, turning, hot and uncomfortable sleep. For a deep and restful sleep, we want the opposite: little digestive activity, a slow heartbeat, and a low body temperature. This means that large protein meals should be had several hours before bedtime, in the afternoon or early evening, allowing a good three to five hours for full digestion before going to bed. If you can’t avoid eating late at night, then eat light: a salad is perfect. For a snack instead of a light meal, have a couple of tablespoons of almond butter on cucumber slices or with celery sticks, for example. Because sleep is really the most important part of the body’s recovery process, it is imperative to optimise sleep.

Closing thoughts

With all of what we have discussed mind, is it really any surprise that more and more professional athletes are opting for this metabolic advantage? A number of years ago, the tennis champion Novak Djokovic divulged one of his secrets. What was it? It was exactly this. This year, the third time winner of the Tour de France, Chris Froome, also divulged one of his secrets. What was it? It was exactly this. Are you curious, say, about Froome’s standard first meal of the day? Four poached eggs, smoked Alaskan salmon, and steamed spinach. Surprising breakfast? Not in the least. Indeed, an excellent breakfast!

We are seeing more and more runners, swimmers, triathletes, but also power lifters and body builders making the switch. It is to their advantage, and when they themselves feel the difference it makes, they know it to be true, at which point there is no turning back. Obviously! Who in their right mind would give up such a metabolic advantage? I suspect that eventually, this will be the standard.

And it’s not surprising at athletes from various disciplines have made these changes to their diets and lifestyles. What is surprising is that so few have actually done this. The change is low, but there is a clear shift in this direction. This is attested by witnessing training specialists promoting these principles, training athletes in this way, and demonstrating the immense advantages that it brings to them in their performances. Vespa Power discussing fat utilisation on their website is a good example.

Is all this stuff new? Of course not! Medical doctors, nutrition researchers , diabetes and metabolic medicine specialists have been talking about this for many decades. Some pioneers include Atkins, Rosedale, Volek and Phinney. And the tradition has continued and expanded, especially in the last decade.

Is this the whole story? Of course not! It never is. But it covers the basics. I plan to explore different aspects of what we started discussing here. You can read more about all these things on blogs and websites. Here are three I have read: the athletic MD Peter Attia had a good blog with many informative articles (especially in the beginning) about physical performance at different stages of his own keto adaptation process. The professional ironman triathlete Ben Greenfield also has written about his experience going form fuelling his body with glucose to using fat instead. I point to these because they have articles specifically about the process of keto adaptation we describe above as foundational for optimal sports performance, and also because they were both meticulous in quantifying the physiological changes and writing about them.

Marty Kendall has a very good blog on optimising nutrition in the sense that we have discussed here, and have been writing about for five years, starting with our very first post, What to eat: four basic rules. But what Marty has done is to actually quantify the value of foods, using the USDA nutritional database, assigning to each food an insulin index derived from its insulinogenic potential, and a nutrient density score based on its macro and micro nutrient content. The associated Facebook group is a great resource for information on this and related topics.

Now that we’ve reached the end, I hope this was useful, and that I have managed to show that, whatever the reason or motivation, whatever the sport or skill set required, there is really no other option other than this when you are serious about optimal physical performance.

If you think this article could be useful to others, please ‘Like’ and ‘Share’ it.

Treating arthritis II: cleansing, nourishing and rebuilding

Preventing arthritis is easy. Unfortunately, everything everyone does, or almost, promotes arthritis. But not just arthritis, all inflammatory degenerative conditions. The amazing thing is that what must be done to prevent any of them is quite well known. We have covered a lot of material relating to this already, and it was made clear at the start of Treating arthritis I, that natural healing, even when motivated by the healing of a particular condition, is done through healing the entire organism—all cells, all tissues, all organs, all parts—all at once. Therefore, we could just as well entitle this article “treating arthritis and all other inflammatory degenerative disease conditions” because the approach is fundamentally always the same.

Treating arthritis after it has already developed is not as easy as preventing it, but the extent to which it can be reversed and cured depends firstly on our own dedication and determination, and secondly on the state of the body and amount of damage it has sustained. The first article on arthritis was posted a while back. Its writing was motivated by my wish to help a friend who suffers from a highly debilitating form of arthritis for which conventional approaches are mostly inadequate—as inadequate as they are for all other degenerative chronic conditions.

It is useful for me to know that even if these efforts of were in vain in the sense that they were not acknowledged and didn’t motivate in them to make the recommended changes in lifestyle and diet, the article must have made some difference to some people because it has at this point been viewed more than 4600 times, and is the most viewed of all the posts on the blog after the Welcome page. If you are among the millions of people who suffer from arthritis, and also happens to be one of those who read Treating arthritis I, I hope you found it useful, and you are most welcome to let me and every other reader know how.

There is an obvious difficulty in overcoming any state of disease, especially one like arthritis. It is that everything about our success depends on our efforts to foster and nurture the conditions under which the organism can heal and repair itself. This is the only way to regain health. I want to emphasise this more explicitly:

It is only by creating, fostering and maintaining the biochemical, hormonal and physiological conditions under which the organism has the ability to clean, repair and rebuild its cells, tissues and organs that disease conditions—no matter what they are—can be prevented, overcome, reversed and recovered from. What we are required to do is provide the organism what it needs to do this.

The fundamental elements we concentrated on in the first part were: hydration, alkalisation, and magnesium. As was underlined, these are essential for everyone, but primordial for arthritis relief. The detailed recommendations were intended to help establish good habits. Their essence should be understood as follows.

what-arthritis-pain-feels-like-722x406

Illustration of painful, inflamed, arthritic joints. (Image taken from Everyday Health)

Every day, from the moment you get out of bed, your primary concern should be to hydrate and alkalise. This is particularly important in the morning and the first part of the day. There is a natural daily cycle governed by the circadian rhythm which controls all processes in the organism by a delicate balance of a vast number of different hormones. A good example relating to the hydration-dehydration cycle, is that the hormone calcitonin whose role is to put calcium from the bloodstream into bones and teeth, is active at night as dehydration sets in: as the water content of the blood decreases, the kidneys release renin and angiotensin, calcitonin is activated, and can thus do its work for fixing calcium where it is needed, subject to adequate amounts of the all-important fat-soluble vitamins D and K2. There are surely many more hormonal processes that depend on the diurnal cycle than those we currently know of. The point to remember is that we have to make hydration and alkalisation a priority in our life, and repeat this every day, while allowing dehydration during the night by typically having our last drink of water between 19 and 20 hours and nothing else until the morning.

Hydration and alkalisation are most effectively done when there is no food in the stomach, and both depend critically on maintaining a balanced intake of water and unrefined salt. An easy way to keep track of both and ensure optimal balance, is to prepare capsules filled with unrefined sea salt, taking one capsule for every half liter of water tea or green juice. This is particularly useful when doing a cleanse. In normal circumstances, it can also easily be achieved by having watery veggies like cucumber, celery or kohlrabi with liberal amounts of salt a couple of times a day. It is ideal to finish drinking about 30-45 minute before eating and not drink for two to three hours after. This leads to a natural rhythm of drinking, waiting, eating, waiting, and repeating this pattern throughout the day.

As this is so, it is easiest to hydrate and alkalise thoroughly each day by adopting a regime based on having only one big meal in the late afternoon or early evening, leaving the rest of the day before that to focus on these crucial aspects of our optimal health without the constraints of the timing surrounding eating. Snacking on raw veggies and salt is perfect and can be done at any time regardless of drinking, because it is also a kind of drinking: watery veggies are basically water with minerals, enzymes, phytonutrients and some fibre. Intermittent fasting, as is called, has many metabolic and physiological benefits not least of which is natural detoxification.

We have looked at some of the key aspects of this practice in The crux of the intermittent fasting, and I plan to deepen this investigation in the future, but maybe the most useful consequence of it, which should also come across as a rather obvious, is that if the body is getting food of any kind that requires processing, then it will immediately engage in doing just that: processing it to extract what it can from it.

Food processing is prioritised and mobilises much of the body’s energy and resources: blood supply (directed to the stomach), secretions from the digestive organs (acid and enzymes from the stomach; insulin, bicarbonate and more digestive enzymes from the pancreas; and bile produced by the liver and stored in the gallbladder), active transport across the intestinal wall into the bloodstream, increased workload on kidneys and liver in filtering metabolic wastes out of the blood, and although you don’t feel it, you can be sure that this does indeed require a lot of energy and bodily resources.

Allowing the body to rest from all this food processing related physiological activity leaves all this energy for other tasks which generally fall in the category of “clean and repair”. This is the natural detoxification that the body desperately needs to engage in as often and regularly as possible but unfortunately cannot because we are, from the time we wake up to the time we go to bed, almost constantly eating. As soon as we take the foot off the gas pedal and give the system a much-needed break from food processing, the organism immediately begins to clean and repair itself. This is why fasting is so good.

Now, if you, in addition to that, provide the organism with a supply of vital nutrients—enzymes, vitamins, minerals—in a form that requires no digestion and is immediately absorbable from the intestines into the bloodstream in the form of vegetable juices, this becomes an amazing way to bring about self-healing in what will indeed look like a most miraculous manner depending on how sick we are at the onset. This is what happens during a juice fast or cleanse, and although fasting has been practiced for centuries, and juice fasting for many decades, both with awe-inspiring results, one recent and vocal advocate of juicing cleanses for healing is the Englishman Jason Vale who runs the Juicy Oasis retreat and healing centre in Portugal (see Superjuice Me on FMTV).

Arthritis sufferers would do extremely well to consider doing such a juice fast as well as adopting intermittent fasting as a long-term daily practice. These measures—in and of themselves—could resolve the problem permanently in a relatively brief period of time.

The importance of magnesium was also emphasised in Treating arthritis I. The best is to have baths with one cup of nigari and one cup of baking soda at least once a week (a couple of times is great, and in some circumstances you may want or need to have them every other day). We should soak the whole body for 45–60 minutes. Magnesium oil, a saturated solution of nigari in water, is also very effective. Putting it on the skin of the arms, upper back and neck, chest and belly, legs and bum, avoiding sensitive skin of the armpits and genital area, and leaving it at least 30 minutes before showering. It can work wonders to loosen tight, achy or cramping muscles, and will often do this quickly from the first application. It doesn’t need to be done every day, but it can for several months without risking overwhelming the system with too much magnesium. Oral supplementation with liposomal (fat-bound) magnesium is also a very good idea.

Once we have understood the importance of these elements of health, healing and recovery that are hydration, alkalisation, magnesium, juicing green vegetables and intermittent fasting, and incorporated them into our life as fundamental pillars of optimal health, then we can and must turn to the question of what to eat when we do eat.

When we consider what to eat from the perspective of eating to most effectively promote health, the considerations can be very different from what they might be were we to take any other point of view as to our primary motivation. For optimal health, the first and foremost important consideration is the old and well-known principle first do no harm. This means what it says, but more explicitly means to not eat anything that has or may have detrimental effects on the organism. Using “has” implies negative effects have been identified and demonstrated to a lesser or greater extent, whereas “may have” means that even though there may be little, inconclusive or no evidence, there are nevertheless reasons to be skeptical or at least cautious about its safety or health benefits. Simple examples include cigarette smoke that is well established to have multiple negative impacts on our health, and industrial pesticides demonstrated to be endocrine disruptors or neurotoxic: a new brand of cigarettes or a new yet untested agricultural pesticide should therefore also be considered as potentially harmful. This is just common sense.

Following this principle encourages us to eliminate industrial chemicals and additives from our food and drink, but also from our cleaning and body care products. This can sound as an obvious and simple first step, but it is not so easy nor so simple without considerable care and attention to detail. Moreover, it also implies, right from the start, no industrially processed products of any kind, and that is a major step for most people given the state of affairs and average dietary regime of the bulk of the population in industrialised countries.

Assuming you are reading this because you are already on the lookout for better ways of doing things, as well as already feeding yourself with real food, this is not such a big deal. And in practice, it means this: buy and eat only whole organically grown or raised food, use only the simplest and most benign organic cleaning and body care products, drink the highest quality filtered or natural spring or mineral water that is certified to be free of known major and minor pollutants, and take only the highest quality supplements. Doing only this ensures an already excellent base for a healthy lifestyle, and it is already enough to avoid and prevent a lot of potential health disorders.

It is, however, not enough if our goal it to be optimally healthy, never have any health disorders at all, and live strong and vibrant to 100, 120 or 140 years of age. It is, also, not enough if we are trying to stop progression, reverse already existing damage, and eventually recover from our own arthritic condition that may have been causing us pain for years or decades. In either case, we need to go further.

The statement in the opening paragraph about the universality of the natural healing approach to treatment and prevention of disease conditions is here both appropriate and necessary to emphasise:

the most fundamental characteristic of but also driver in progressively worsening arthritis symptoms and degeneration is chronic systemic inflammation;

the most fundamental characteristic of but also driver in progressively worsening cardiovascular heart disease symptoms and degeneration is chronic systemic inflammation;

the most fundamental characteristic of but also driver in progressively worsening cardiovascular brain disease symptoms and degeneration is chronic systemic inflammation;

the most fundamental characteristic of but also driver in progressively worsening Alzheimer’s disease symptoms and degeneration is chronic systemic inflammation;

the most fundamental characteristic of but also driver in progressively worsening multiple sclerosis symptoms and degeneration is chronic systemic inflammation;

the most fundamental characteristic of but also driver in progressively worsening Crohn’s disease symptoms and degeneration is chronic systemic inflammation;

and, of course, the most fundamental characteristic of but also driver in progressively worsening type II diabetes symptoms and degeneration is also chronic systemic inflammation,

even if we know that the root cause of this diabetes is chronically elevated glucose and insulin levels, that this leads to systemic inflammation, which in turn leads to the pathological symptoms and degeneration, something that is underlined by the fact that diabetics suffer all other chronic diseases listed above 200-400% more than non-diabetics.

This was a forceful, repetitive, heavy-handed way to express and highlight this fundamental characteristic that is shared by so many disease conditions. But it is, I think objectively, the most important point to have in mind when our intention is to really understand health and to be ourselves, at all levels, an expression and embodiment of health. Because whether it is inflammation in the joints as in arthritis, in the arteries supplying the heart or brain as in cardiovascular disease, in the brain itself as in Alzheimer’s disease, in the nerves throughout the body as in multiple sclerosis, in the lining of the gut as in Crohn’s disease, or basically everywhere in the body as for diabetes, this inflammation—in all cases—is chronic and systemic. Hence, it is this which must be addressed and corrected, and it is addressed and corrected in exactly the same way in every case.

Taking into account differences and thus tuning the treatment, especially in what concerns reversing and repairing existing damage, is important. But it is definitely secondary with respect to the root cause of degeneration that is systemic inflammation. And even these differences whose importance varies depending on the specificity of the condition we aim to address, all of them—when working with natural, nutrition-based medicine—are useful and health-promoting for all conditions: none are detrimental to the treatment of any other specific disease.

For example, supplementing with organic silicic acid, collagen, vitamin C, and vitamin D is essential for repairing and rebuilding cartilage and soft tissues, and thus essential in the treatment of arthritis. It is, however, greatly beneficial for everyone to supplement with these micronutrients because all will benefit from it. It is essential to supplement with and maintain very high levels of vitamin B12 (>1200 pg/ml) when treating multiple sclerosis or Parkinson’s disease, but it is excellent for everyone to do the same. It is essential to supplement with L-Carnosine when treating Crohn’s disease because it is particularly useful for healing the lining of the gut. But it is also very beneficial for everybody to take because it helps to stop and repair the damage caused by glycation, which affects everyone to a greater or lesser extent depending on circulating glucose and insulin concentrations.

And thus, the first principle is to eliminate from our life what causes inflammation: everything that triggers an inflammatory reaction in the body. This obviously includes all allergens which, even if there are some well-known foods that have been recognised as causing allergic reactions, mild or severe, in a large fraction of the population, and could, therefore, be eliminated from our diet directly in order to minimise unnecessary exposure to potentially harmful substances, it is nevertheless ultimately an individual assessment and testing of food intolerance that is needed.

The foods most likely to cause an inflammatory immune system response are gluten-containing grain products and animal milk products. Estimates of intolerance for these two classes of foods—grains and dairy—range between 50 and 75% in most countries, although evolutionary adaptations can have an important effect. Good examples are the indigenous Swiss mountain dwellers and the African nomadic tribe called Masai, who, by consuming most of their daily calories from milk and milk products for thousands of years, have developed the genetic adaptations for the immune system to tolerate the proteins in milk that cause mild to severe allergic reaction in close to 75% of the world’s population, with the most extreme proportions of 90-95\% in the Chinese and other Asian populations that have never, throughout their history, consumed milk products.

The other two classes of foods that are established as inflammatory—highly inflammatory—even if they rarely cause intolerance or allergic reactions, are insulin-stimulating carbohydrates and omega-6 fats. In the case of these substances, it is not inflammation triggered by a reaction to them of the immune system. Rather, they themselves trigger inflammatory biochemical pathways: several hundred inflammatory pathways! These foods should therefore be eliminated from the diet: all simple and starchy carbohydrates, and all vegetable oils. Nuts and seeds, which contain omega-6 oils, can be had whole in small quantities. Olive oil is mono-unsaturated and is the best vegetable oil to use for salads. No omega-6 rich vegetable oil should be used.

I don’t think it’s necessary nor useful to discuss the inflammatory effects of industrial chemicals because we already know that they only cause harm and should be eliminated from our food supply, avoided at all costs in all their other forms by everyone who is even superficially concerned with their health.

This is our first conclusion: to minimise inflammation, it is essential to eliminate inflammatory foods; and the most inflammatory classes of foods are dairy, grains, insulin-stimulating carbohydrates and omega-6 oils. To overcome or prevent inflammatory disease conditions, arthritis but also all others, we have to stop eating these foods. It is as simple as that. And although it is true that we could potentially supplement with adequate types and amounts of enzymes to try to ensure that all types of proteins found in these foods are actually broken down properly during digestion in order to avoid triggering an immune response, it does seem silly to eat or drink something that we know cannot be metabolised correctly and which is, for this reason, harmful to the organism, but still try to mitigate the harm it causes by taking a supplement of those enzymes needed to digest it that do exist even if our body’s genetic and evolutionary makeup doesn’t produce. This reflection applies to dairy and grain proteins to which we are intolerant. It doesn’t apply to insulin-stimulating carbohydrates or omega-6 fats, because these seldom cause allergic reactions in people, but are nevertheless universally inflammatory.

The second principle is to consume anti-inflammatory foods. It should not be a surprise to find out that the most anti-inflammatory foods (think of them as soothing to the body), also tend to be the most alkalising: raw, green, chlorophyl-rich plant foods, and especially green vegetable juices. The most anti-inflammatory and anti-oxidant fat is the miraculously beneficial, highly saturated (96%), and medium chain triglyceride-rich (50%) coconut oil. Hence, without any additional considerations, we already know that an optimally anti-inflammatory and healing diet should be based on mostly raw vegetables and salads, in particular green ones, green juices, and lots of coconut oil from all coconut products.

Also not surprisingly, we can have as much of these nutrient-rich foods as we want, and the more the better. This, it turns out, is an extremely useful selection criterion to determine the level to which something can be good or bad: how much of it we can eat, and what are the consequences, if any, of having increasingly larger quantities; is there an upper limit in the sense that above a certain amount we can expect negative consequences, or is there only a lower limit below which therapeutic value is not noticeable? For what concerns green juices, greens and coconut oil, I would say that there are only lower limits to the minimum we should all intake in order to be perfectly healthy, and no upper limits within what can be considered reasonable through the body’s auto-regulation mechanisms of satiety and digestive function.

For instance, we can drink a 250 or 500 ml of green juice, and that’s great. We can drink 1000 ml and that’s much better. We can drink two or three litres of green juice per day, and that is truly amazingly therapeutic, something that would be done during a juice cleanse. For coconut oil and milk, we can have one or two tablespoons per day, and that’s really good (apparently enough to slow down cerebral degeneration). We can have five to seven tablespoons per day, and that’s far better (apparently enough to reverse early stage dementia and Alzheimer’s). We can have as much as 200 or 300 ml (between 13 and 20 tbsp) of oil per day, and that’s better still. In the case of coconut oil and milk, eating such large quantities amounts to a lot of calories, all from fat which makes us feel really full and not willing to eat anything. This is the body’s natural hormonal messaging system to prevent over-eating and it works perfectly well in this case. It also works well for protein. Only for sugars and starches does it not work so well because we evolved having very few carbohydrates and thus didn’t have to develop the mechanism to avoid overeating them—what pretty much the whole world is doing nowadays.

Most nuts and seeds can be considered as superfoods because of they are very concentrated sources of minerals, antioxidants, unique phytonutrients, vitamins, as well as fat and protein. Because they are seeds, they also have anti-nutrient—phytates and enzyme inhibitors—without which they would not keep for months on end as they do, and would spoil much more quickly. These are not as strong as they are in cereal grains, which have can keep for thousands of years, as they have in some pyramids, and then sprout after soaking in water for a while. This is nature’s very clever way to ensure dry seeds retain the nutrients needed to grow the plant when the conditions are suitable. But it implies that we must do something to them before we can consume them and know that they are wholly beneficial and health-promoting rather than only partially so.

The solution is simple: soak the dry seeds or nuts in water for 24 hours to hydrate them and activate the biological mechanisms responsible for sprouting—to get the seed ready to produce a new plant by making inactive the enzyme inhibitors and phytates—and making all of its nutrients fully available. Soaked nuts and seeds can definitely be eaten hydrated, and are much more filling that way because they hold as much water as their dry weight (they double in weight and volume when fully hydrated), but they can also be dehydrated after having soaked for 24 hours, and be preserved for much longer than the couple of days they can in the fridge before going bad when hydrated. This is what I do at home: 24 hours of soaking with rinsing and changing of the water a couple of times in between, and 24-36 hours of drying in the dehydrator at 45 C to keep all enzymes alive.

Roasting or otherwise heating the nut or seed also neutralises the anti nutrients, but this also destroys the enzymes, making it a dead food that will require the pancreas to produce the necessary enzymes for digestion, as well as cause digestive stress and acidification. Nonetheless, roasted nuts are nutritious and delicious, and thus great to have once in a while. Either way, sprouted or not, nuts and seeds are by their nature nutrient-rich concentrated food and should generally only be had in relatively small quantities (a handful or two). Doing this will also prevent excessive intake of omega-6 fats that make up about 50% of their weight, even if whole nuts and seeds have their own anti-oxidants that give additional protection from free-radicals in the body.

Having a somewhat different status as food, but being naturally most anti-inflammatory, are the trio of ginger, turmeric and garlic. Some may have difficulty digesting garlic (as is the case with onions as well), but ginger and turmeric are generally very easy to digest and actually digestive aids. It is important in the treatment of arthritis to consume them often, even daily, and in liberal amounts. Ginger is very easy to have in relatively large quantity by cold press juicing it in your daily green juice (that’s what we do), which guarantees you a good therapeutic amount on a daily basis. For turmeric, it is also possibly to find it fresh in some places, but it stains everything that it comes in contact with. Mostly for this reason, we take it in capsules, where it can even be concentrated further to be more potent still. The beneficial compounds in turmeric are most effectively absorbed when taken with plenty of fat (coconut fat is perfect).

Animal protein other than from dairy—eggs, meat and fish—is important for the body but also highly acidifying and therefore inflammatory. In addition, the proteins need to be completely broken down first by the acidic gastric juices in the stomach and then by the digestive enzymes in the intestines in order for the amino acids of which they are made to be available to the brain and other organs, but also prevent partially digested proteins from finding their way into the bloodstream and causing additional inflammatory immune responses.

Therefore, we have to eat only small quantities of the highest quality grass-fed or wild caught animal products, give the organism plenty of time to cleanse the metabolic byproducts of their digestion, and, I recommend, supplement with digestive enzymes when eating animal foods. In fact, I recommend taking digestive enzymes whenever you eat cooked foods: we do not want to get anywhere close to exhausting the pancreas’ enzyme-producing potential, because enzymes are far more important for all other molecular repair and rebuild processes than they are for digesting cooked food, and we need to keep them for these purposes if we aim to live healthy for a long time.

This is our second conclusion: to minimise inflammation and maximise repairing and rebuilding of damaged tissues, it is essential to consume the most powerfully anti-inflammatory, nutrient-dense and anti-oxidant foods. The diet should therefore be mostly raw, primarily green vegetables, green juices, special anti-inflammatory foods such as ginger, turmeric and garlic, unlimited amounts of coconut products rich in coconut oil, some sprouted nuts and seeds, and small amounts of clean animal flesh products accompanied with plenty of time for metabolic cleansing on a continual basis. The supplements most important in treating and reversing arthritis are organic silica, collagen complex (Reverse Aging), whole food vitamin C (from The Synergy Company), magnesium (L-Threonate; both from Mercola), B12 (Thorne), the fat soluble vitamins A-D-K (DaVinci), turmeric extract (Organic India and Gaia Herbs), niacinamide (Thorne), and the universally needed but universally deficient iodine (in Lugol’s solution). In addition, it may be really beneficial to take high doses (50000 IU/day) of vitamin D3 for at least three and maybe up to six months or more, in order to set the body on its course to intensive healing and recovery from years of arthritic degeneration. This has been found to be very effective in some people. Supplementing with proteolytic enzymes is also very important to accelerate healing and repair of damaged tissues.

Incorporating these principles and specific recommendations into one’s life, not as a special diet, but as a comprehensive way of taking care of this amazing organism that is the human body mind, will not only treat, reverse and cure arthritis to the greatest extent, and maybe even completely depending on the level of degeneration, but will do the same for all inflammatory conditions, which underlie all degenerative diseases. In addition, the immune system will grow to be so strong that no infectious diseases will be able to take hold or develop within your body: never get a cold, never get a flu, never catch anything at all.

Finally, there are two crucially important factors which are not related to diet, and that in many ways can overshadow all other efforts to heal and remain in optimal health: lack of sleep and psychological/emotional stress. They are more than important: they are foundational. Without good sleep and minimal stress it is impossible to become and remain vibrantly healthy, no matter what else we do or don’t do.

This shouldn’t be understood to mean that if we don’t sleep well or are overstressed there is no point doing anything else. On the contrary! It is all that much more important to do everything else we can. However, it means that if we are already doing everything else, then without correcting the conditions causing us stress and preventing us to get enough restful sleep, we will never reach our optimal health potential.

Having said that, you can be sure that they go hand in hand: optimal nutrition and biochemistry promote less stress and better sleep; better sleep and less stress promote more balanced biochemistry, digestion, cleansing, and cellular rebuilding and repairing. They are the two sides of the same coin, one that is measurelessly priceless: optimal health.

If you enjoyed this article, please Like and share it to help other people.

The crux of intermittent fasting

It is less than futile, in fact, it is outright nonsensical, to argue in favour of or promote an explanation that is in contradiction with observational evidence. What is required is to find, or at least try to find, a sound and well-founded explanation. And not just for some of the observations, but for each individual observation, as well as for the entire ensemble of observations. This is what we should do.

Fasting means not eating; everyone knows that. The meaning of the word has been loosened to include not consuming appreciable amounts of calories, as in doing a green juice fast, for example, but which should instead rightly be called a cleanse. The expression intermittent fasting implies a cycle of some kind, and is used to mean not eating for periods of 16, 18, 24 or 48 hours, but on a regular basis, like every week or even every day.

Fasting has been known and recognised for its often quasi-miraculous curative effects for thousands of years. Indeed, it is possible to find accounts of individuals recovering from just about any ailment and disease imaginable simply from fasting long enough. It seems, however, that fasting as a healing modality, has, over the past couple of centuries, steadily grown less popular in the medical profession and, as a consequence, also in the general population.

A resurgence of scientific interest over the last decades in the benefits of fasting for treating various degenerative conditions like arthritis and cancer, but also for extending healthy lifespan about which I will write at one point in the future, has brought it back into the spotlight, especially in circles of optimal health enthusiasts, which includes some gym go-ers and body builders interested not so much in optimal health, but mostly in losing fat and gaining muscle.

Therefore, there has been quite a few people trying out or adopting intermittent fasting for periods of a few weeks to a few months, or even longer, but reading things here and there shows that they have had varying success given their initial motivations, whatever those might have been.

Ori Hofmekler was one of the first to popularise the idea of intermittent fasting with his book The Warrior Diet. He has continued to write and to encourage intermittent fasting for a wide range of benefits, especially in regards to the goal of improving body composition, as one of his last titles expresses perfectly: Maximum Muscle, Minimum Fat.

Dr Hertoghe, the world famous endocrinologist and anti-ageing specialist, as well as Mark Sisson (Primal Blueprint) have also been vocal and influential proponents of intermittent fasting for a while. More recently, Dr Mercola did several interviews with Hofmekler, and wrote a few articles on the topic, sharing his experience and enthusiasm for the health and fitness benefits intermittent fasting can bring. These are just some of the well known players that I know of and respect in the natural health community, that have endorsed and promoted this kind of cyclical fasting.

Naturally, as is the case for almost any topic we can think of, there are opposing opinions and, in fact, bashing of intermittent fasting as a means to improve health and body composition, especially in the popular fitness and gym culture. And, as is also the case for almost any topic we can think of, contradictory views and opinions are usually caused by misunderstanding, or at least, incomplete understanding of the elements involved, and in particular the more subtle ones.

On the one hand, we have the proponents claiming that we can very effectively get much healthier, with much improved energy levels, mood, digestion, and natural detoxification and excretion of metabolic acids; normalise and recover the optimal balance of specific hormones, and eventually, of the entire hormonal system; over time lose all excess body fat reserve, increase flexibility and hasten recovery, better preserve our precious muscle tissue and build more very efficiently. And these are just some of the claimed (but also documented) benefits of intermittent fasting.

On the other hand, the nay-sayers and bashers report that these claims are more than just false, they are, in fact, often the exact opposite of what they have found or seen for themselves or in others coming to them for help and expert advice. Reports of feeling really terrible, with massive headaches, bad digestion, awfully low energy levels, and thus, obviously, very bad and destructive moods; loss of some fat but also, over time, of lots or maybe even most of their muscle tissue; extreme hunger, with frightening ravenousness when evening mealtime comes around, leading to monstrous, uncontrolled and uncontrollable overeating without discrimination of food kinds or quality, and over time, showing obvious signs that can be identified as those associated with eating disorders.

How is it possible to have research, studies and documented cases—plenty of documented cases—that provide observational evidence—proof, if you prefer—that support the claims of both of these camps? How can we observe and actually measure such profoundly different consequences in different people that are supposed to follow comparable diets, consequences that are diametrically opposed to one another. In other words, observational evidence that appears to be completely and totally contradictory?

A simple approach, the one espoused by many, maybe most, of the intermittent fasting bashers, is to just say that proponents are wrong and imagining things, letting themselves be fooled by the hype, but actually blind to the reality of the detrimental consequences of practicing cyclical fasting.

For me, the only satisfactory approach is the one that seeks to explain all the observations, to reconcile all the observational evidence, and make sense of the entire ensemble of information available through a physiology and biochemistry based explanation that is complete. I also think it is fair to say that there are more better informed proponents than there are opponents, but this is not obviously the case, and I would thus not bet much on this claim.

Here it is, the crux of the matter, the one single crucial element needed to understand and explain the wide spectrum of apparently contradictory observations that is overlooked because it is misunderstood:

The body’s response to intermittent fasting is entirely dependent upon the state of one’s metabolism, and everything about it hinges on the physiology of nutritional ketosis. 

In fact, the vast majority of the benefits of intermittent fasting are those derived from nutritional ketosis but heightened by the fasted state, and therefore, can only become manifest if the fasting individual is keto-adapted and remains in nutritional ketosis most of the time.

You might be thinking: what in the world is nutritional ketosis, and where’s the explanation for the contradictory observations? Nutritional ketosis is the metabolic state in which the liver manufactures ketone bodies from fat to provide fuel for the brain cells that can only use glucose or ketones for their energy needs. This only happens if and when circulating insulin levels are low, and when blood glucose stays below 80-90 mg/dL for a period of 24-48 hours (generally speaking, on average, and in normal circumstance). The reason is fat will not be burned for fuel is there is plenty of glucose in the blood, and in order to burn fat, insulin must be low.

This metabolic state is induced either by fasting—this is the quickest but also most extreme way to do it, or by eliminating insulin-stimulating carbohydrates (sugars and starches) from the diet—this is by far the easier and obviously much more sustainable way to do it. The longer it is maintained, the better adapted the metabolism becomes. But before ketones are produced to fuel the brain, the body goes through metabolic changes to which it tries to adapt as best it can. The most important but also most severe of them all, is the fundamental shift from using glucose as the primary fuel, not just for the brain, but for all cellular energy needs in the body, to using fats, both from body fat reserves and from food.

The bane of our time is global, chronically elevated insulin levels. Hyper-insulinemia, as it is technically called, sits squarely as one of the root cause of all the diseases of civilisation that kill most (90%) of us today, more or less uniformly across the planet. What does this have to do with our considerations of intermittent fasting? It has everything to do with it:

Insulin is the master hormone that orchestrates the metabolism in what relates to storage and usage of macronutrient (carbs, fats, and proteins) at the cellular level.

Chronically elevated insulin always and inevitably leads to insulin resistance. Insulin resistance means that cells do not respond to insulin as they should, and require ever increasing concentrations of insulin in order to move glucose into the cell. And ever increasing concentrations of insulin means ever increasing inability to use fat cellular fuel, with particular difficulty in unlocking and tapping into the usually greatly overabundant reserves of body fat.

What is truly remarkable is that insulin resistance, even if it has been developing and growing steadily with each passing day and with each high carb meal or snack over our entire lifetime, it can be reversed in weeks when insulin-stimulating carbs are eliminated from the diet: 48 hours to enter nutritional ketosis; one week for water retention release, initial intestinal detox and basic adaptation to fat-burning; four weeks for functional keto-adaptation; and 8 weeks for complete keto-adaptation.

Eliminating insulin-stimulating carbs eliminated the need for large insulin secretions by the pancreas. Therefore, both glucose and insulin concentrations steadily decrease with time, and eventually fat-burning and ketone production kicks in, marking the first step in the transition of the metabolism from sugar-burning to fat-burning, which is what we referred to as fat- or keto-adaptation.

There is a catch though: before fat-burning and ketone production begins, the metabolism of the insulin resistant individual will go through withdrawal from its sugar addiction. First, sugar levels start to drop. After a number of hours, 3 to 4 hours say, blood sugar is too low to supply enough fast-burning glucose to cells for their metabolic activities. Because insulin remains high, and because the body is highly insulin resistant, as we said, it is not possible to use fat from the body’s fat stores. Therefore, it is the liver that comes to the rescue and begins to convert its stores of glycogen into glucose and pumping that into the bloodstream to provide cellular fuel.

Within a few hours, however, the glycogen in the liver is depleted, and blood sugar drops once again, and lower still. Because the body remains unable to tap into its fat reserves due to the state of insulin resistance, it has, at this point, no choice but to turn to muscle tissue, from which it is far easier to breakdown protein and manufacture glucose than it is to start burning fat. And thus, the muscles are eaten away in order to provide the glucose to all of the multitude of insulin resistant (sugar-addicted) cells throughout the organism.

We now come to the final analysis of our observational evidence in regards to intermittent fasting, and consider two scenarios that can explain, as it rightly should, the ensemble of observations in its entirety, and thus clarify and reconcile the apparent contradictions that are seen, and which lead to serious confusion about the issue, even, and maybe especially, among our health, fitness and bodybuilding experts.

Scenario 1: We take a perfectly keto-adapted person who has been eating a diet devoid of insulin-stimulating carbs for a long time, and who therefore always has very low glucose and insulin levels, and as a consequence, exquisite insulin-sensitivity. What happens if they stop eating? Nothing special, really. Their body is always using fat and ketones to supply all healthy body and brain cells with their metabolic energy needs. So, if there is no fat that is provided through the digestive system, then it is taken, without any trouble or noticeable changes in energy levels or concentration, from the body’s fat reserves that are always plentiful, even in the leanest among us with single digit body fat, because 1 gram provides 9 calories, which means that we need only about 200 g for a whole day of normal activities, and have at least 5 kg at any given time (8.5% fat on 60 kg body weight).

Moreover, if we exercise during the fast, there is no noticeable difference because at low intensity, cellular energy needs are taken care of by fat which is continuously released from the fat stores into the bloodstream, while at higher intensity the glycogen stored in the muscle cells themselves, can be used in the form of quick burning glucose together with additional supply from the liver than converts its stores of glycogen if need be (if stress hormones are secreted).

So, biking and working out with weights, for example, is perfectly fine and actually feels great. Even more interesting is the fact that stimulating the muscular system by exercising while fasting triggers the release of various hormones in addition to growth hormone for which there is nothing more effective than fasting, whose purpose is primarily to preserve those physiologically important muscle tissues as essential for functional survival, while breaking down to recycle the proteins of other tissues which are not required like lumps, tumours, and scar tissue. And this means that the hormonal environment created by exercise under fasting conditions is conducive to both preserving and building more muscle, all the while also expediting and maximising fat-burning. And this is what is observed.

Hunger is present at times, but is certainly far from being problematic. There are no headaches, no stomach pains, no sleepiness, no scattered mental discursiveness, no problems concentrating or working. Sitting down to eat the evening’s nutrient-dense, enzyme-rich and high fat meal with adequate amounts of protein for tissue repair and muscle building, is nourishing, perfectly satisfying, and well digested throughout the evening and night, as long as we eat several hours before going to bed. No over-eating, no cravings, no psychological disturbances, no problems at all. A picture of perfect metabolic efficiency.

Scenario 2: We take an average but pretty active person from the general population who eats a standard diet with plenty of insulin-stimulating carbs, both simple sugars, and complex carbs in the form of pasta, rice, whole grain bread, etc (70% of calories), and who therefore always has high blood glucose and insulin levels, and as a consequence, pretty strong insulin resistance. What happens if they stop eating? We saw this earlier: blood glucose drops, but not insulin; the liver starts to pump out glucose to pick up the slack, and runs out after about 3-5 hours; sugar drops once more, but not really the insulin; since fat stores cannot be tapped into, muscle tissue is broken down to manufacture glucose; longer period of fasting means more muscle breakdown.

If we exercise gently, things are fine at first because we can tap into the glycogen stored in the muscles, but will soon get much worse because we increase the energy demands, but continue to be unable to use body fat stores, and therefore increase the rate at which muscle tissue is broken down, especially if we do weights and high intensity training.

Low intensity aerobic exercise depletes glycogen from the muscles and when it runs out, we feel exhausted, completely flat out. (This is the same as hitting “the wall” in long distance events, and only occurs because the body cannot readily tap into its fat reserves: a well keto-adapted athlete never really hits any such walls!) Far worse is high intensity exercise, which causes more intense and faster muscle breakdown, the higher the intensity, the more muscle breakdown.

Waking up in the morning after a night’s sleep (and unconscious fast), we are starving, dearly longing for the bread, the jams, the cereals, the orange juice, the waffles, the maple syrup, and everything else we can imagine, but we hold out and go to work. Every hour is excruciating, terrible headache, hunger pains throughout the abdominal cavity, but when these subside, we are falling asleep, with a complete inability to concentrate on anything at all. We feel like shit.

By the time evening rolls around, we are so ravenous we would eat a horse. So we sit down and eat, and eat, and eat everything we can get our hands on: pizza, pasta with sauce and cheese, garlic bread with butter, steak and potatoes or french fries, and then desert, sweets, oh man, we waited all day to eat, and now we can eat anything and everything we want, because tomorrow we’ll be starving again for the whole day. We get up in the morning, and the whole cycle starts over again.

Over time we kind of get used to it, but because we don’t understand the most essential element of the whole thing—nurturing nutritional ketosis—we remain just as insulin-resistant, every day we feel shitty, every night we eat like a pig, and throughout the whole time, more or less, we break down muscle, and our insulin resistance prevents appreciable fat loss. After doing this for a while and seeing the detrimental effects of this regime, we go seek help from a fitness expert. They tell us that this intermittent fasting thing is a load of shit, and as them, grow instantly convinced that all the stuff people say about the benefits it can bring for optimal health and improved body composition is also a load of shit: if it didn’t work for me, then it simply cannot work for anyone.

Unfortunately, neither we nor the fitness expert understands enough physiology, biochemistry, and endocrinology to be able to make sense of these conflicting and contradicting accounts, personal experiences, and observations reported in the scientific literature, and just settle into this view that it really is a load of BS, and that it might work a little, sometimes, on some people, but not on others, and no matter what, it always leads to pathological states of mind, if not full fledged eating disorders.

It is my hope, however, that you are now able to see how these very observations, as conflicting, contradictory, and certainly quite puzzling as they may seem at first, can be explained and reconciled marvellously well in light of a better understanding of the basic principles of energy metabolism, and of the remarkable but unfortunately almost universally misunderstood state of nutritional ketosis, that most medical professionals usually mistake for the pathological condition of diabetic ketoacidosis.

Finally, in closing, I have a confession to make: I have been experimenting with intermittent fasting in one form or another for many years now. I never eat anything before midday, and on most days until about 14:00, which makes it an approximately 18-hour fast from 20:00 the night before. On weekends, I fast until noon, and then go do weight training. On those days, I usually eat for the first time around 17:30, and make that my single meal of the day. On some days I eat a large lunch and dinner to increase my overall calorie and protein intake. I usually workout 3-4 times a week, and usually in the late afternoon-early evening.

I have not experienced loss of muscle since I dropped the insulin-stimulating carbs from my diet in 2007. Both muscle tone and strength is maintained very well even after long periods without resistance training. I have, however, never made a particular effort to gain muscle mass. This year, I would like to see how much muscle I can put on, and will thus put the science to the test for myself. If you are interested, don’t worry, I’ll keep you posted. If you’re not, then that’s fine too.

But if there is a single thing you must remember from what I wrote, it is this: you can only really benefit from intermittent fasting when you are keto-adapted, and remain in a state of nutritional ketosis the majority of the time. Otherwise potential benefits are lost, and the practice can become rather detrimental.

hunterslookingoverplain

How long do you think these hunters hunt each day? Do you think they have a big breakfast before going, or a large lunch while they are out? How long do you think they are out before they settle back around the fire in their village to have their main meal of the day? And what do you think they will eat when they do return with their catch of the day?

(This article was written after reading this article by Dani Shugart on T-Nation sent to me by a friend who knew I would have some remarks to make, and probably some clarifications to bring to it.)