Fasting for renewal and rejuvenation

Fasting stimulates autophagy, mitophagy, stem cell production, detoxification, mitochondrial biogenesis, neurogenesis, and neuroplasticity. Fasting also down-regulates muscle catabolism and up-regulates growth hormones to preserve muscle tissue. Because all of these are crucial for health and youthfulness, but tend to decrease rapidly with age, regular fasting is by far the most effective way to naturally slow down ageing and prolong health.

Autophagy means self-eating but refers to the breaking down and removal of damaged tissues, cells, and cellular component to reuse the molecules of which they are made to build new, healthy cells and tissues.

Mitophagy is the same but for mitochondria. Those damaged and dysfunctional are broken down into their constituents to be made available for rebuilding new ones, which is called mitochondrial biogenesis. Fasting is the most effective way to stimulate autophagy and mitophagy primarily through activation of a special enzyme, Adenosine Monophosphate-activated Protein Kinase, or AMPK for short. Fasting also increases production of nerve growth factor that stimulates the growth of new brain cells, no matter how old you are.

Stem cells have as their main purpose to repair tissues. Stem cell activity is highest in embryos and babies, and steadily decreases with age. Stem cell regeneration is strongly stimulated by fasting, but it’s uniquely related to the burning of fat for fuel, and not to the fasting itself. We know this because genetically switching off fat-burning in fasting mice stops stem cell production.

Detoxification takes place through the release of toxins from tissues. Biological survival mechanisms have evolved to sequester into fat cells chemicals and heavy metals from the bloodstream, and isolate them from damaging more sensitive and biologically active tissues and organs in the rest of the body. When fat cells split open to release the energy stored in the fatty acids they stockpile, these toxins are released into circulation for elimination.

Neurogenesis refers to the making of new neurons (brain cells), and neuroplasticity refers to the creation of new synaptic connections and nerve flux pathways in the neural network of the brain. This is without a doubt one of the most remarkable benefits of fasting.

brain-bright

(Image credits here)

All of these biological mechanisms have deep evolutionary roots. We know this because they are common to the most complex (and thus most recent), and to much simpler (and thus much older) organisms. It is most likely in these deep evolutionary roots that the remarkable healing power of fasting comes from.

Autophagy, mitophagy, stem cells, and ketones

Fasting stimulates the breakdown of dysfunctional proteins and cellular components, the preservation of active muscle tissue, and the rebuilding of new proteins and cells upon refeeding. (Read here an excellent article by Dr Jason Fung on the up-regulation of muscle preservation during fasting.) The acute stress of vigorous exercise, especially of strenuous resistance training, stimulates autophagy in much the same way as fasting does. Both stimulate mitochondrial biogenesis. Does this sound inconsequential to you? It really isn’t.

First, the accumulation of damaged cells and cellular debris can be equated to senescence. And senescence can be equated to death. Or rather, the accumulation of death in the body. Death, in this sense, is not really binary, it’s not like one moment we are alive, and the next we’re dead. It’s much more like we accumulate, over time, dead and dysfunctional cells, dead and dysfunctional mitochondria, dead and dysfunctional organelles. Little by little they accumulate, but there’s a threshold. There’s a point beyond which no more death can be accumulated inside the body. And when that threshold is reached, life can no longer be sustained. This is when we die. We call this ageing. The slowing down of things, the loss of energy, the loss of vitality, the loss of strength and flexibility, and the loss of mental acuity and intelligence. But it is, in reality, nothing other than the gradual loss of life through the gradual accumulation of death.

Second, mitochondria are the source of all the energy that is produced and made available to the body. The mitochondria in the cells produce ATP (adenosine triphosphate), the energy currency for all cellular operations and transactions. And no matter how you look at it, every last little bit of energy that is needed to do anything at all comes from these mitochondria in the cells throughout the body. A tiny drop or increase in energy production in the mitochondria would result in a massive effect on your strength, speed, endurance, resilience, but also concentration and sharpness of mind. Why?

Because there are around 30 trillion cells, and most have between 1000 and 2500 mitochondria each. That makes tens of thousands of trillions of mitochondria. The average cell uses 10 billion units of ATP per day, which means an average adult needs about 3 x 10^25 units of ATP per day. Now you can imagine what happens if the ATP production per mitochondria drops or increases by a tiny fraction, say of just a thousandth of a percent. Because there are so many mitochondria, the magnitude of the effect would be enormous.

Do you remember the “blues and greens” that Jeremy Renner and the other agents carried in little aluminum cases around their necks in the Hollywood film The Bourne Legacy? Remember how much they enhanced both physical and mental performance? This is what these little pills’ main purpose was: to increase mitochondrial energy production efficiency.

We don’t usually think about it in this way, but we should. Doing so, we would understand how important it is to support the body in cleansing and clearing out damaged tissues and cellular components so that they don’t accumulate. And we would also understand how important it is to support the body in rebuilding new, healthy cells and mitochondria to maintain optimal function for as long as possible.

Stem cells everywhere in the body appear to love fat-burning. Because fasting triggers fat-burning in basically every cell of the body, it also triggers an explosion in stem cells activity. It is this explosion of stem cell activity that powerfully stimulates tissue repair and regeneration throughout the body’s tissues.

Ketones are produced in the liver by transforming free fatty acids into beta hydroxy butyrate and acetoacetate through beta-oxidation. Ketones are the preferred fuel for the brain and heart, because burning ketones to generate energy (ATP) produces much fewer reactive oxygen species (free radicals), and thereby significantly reduces oxidative damage to the muscle cells in the heart and the neurons in the brain. Isn’t that so amazing?

The relationship between nutritional ketosis and fasting is simple: the brain is one of if not the most crucial organ because it regulates and coordinates almost everything that happens in the body; the metabolic activity of the brain can be fuelled by glucose or ketones; as blood glucose concentration drops and thus becomes less abundant, ketone production in the liver increases to ensure an adequate supply of fuel to the brain. Glucose levels naturally drop within a few hours, even after a carbohydrate-rich meal, due to the action of insulin. Fasting lowers and maintains low blood glucose levels over significantly longer periods of time. Therefore, in general, the longer the fast, the more ketones are produced, and the more are in circulation in the bloodstream.

Burning ketones for fuel stimulates the production, within cells, of antioxidants like superoxide dismutase (that transforms the superoxide radical into molecular oxygen and hydrogen peroxide), and catalase (that breaks down peroxide). Both the superoxide radical and the hydrogen peroxide molecule can cause many types of cellular damage if not neutralised or broken down as early as possible. So, the more ketones available, the more cellular superoxide dismutase produced, and the less cellular damage from free radical damage sustained. Isn’t this amazing?

Ketones also stimulate the production of adenine dinucleotide phosphate (NADPH) and NAD coenzyme that recharge antioxidants like glutathione, ubiquinol, and vitamin C to a functional state. Major functions of NADPH include recharging antioxidants; providing electrons for the synthesis of fatty acid steroids, proteins, and DNA; and acting as the substrate for NADPH oxidase (NOX) which plays a key role in immune function. 

MCT oil and caprylic acid, both derived from coconut oil, are directly and easily converted to fuel and ketones by the liver to fuel brain and heart, and that will therefore bring your lucidity and clarity of mind and thinking. For this reason, they are excellent supplements to take in the morning and during the first part of the day, but should be avoided in the evening because they can lead to hyper-alertness and interfere with a restful sleep. MCT oil shouldn’t be used in case of liver disease.

Nutritional ketosis improves insulin sensitivity, stimulates fat loss, improves mental clarity, reduces risk of cancer, and increases longevity. It reduces cellular damage and inflammation through much lower free-radical and inflammatory cytokine production.  And it also increases cellular and tissue repair by stepping up autophagy, mitophagy, and stem cell activation. All of these benefits are consequences, direct and indirect, of sustained low glucose and low insulin levels, and of the derivation of cellular energy from fats and ketones rather than from glucose. In short, nutritional ketosis is amazingly—actually almost supernaturally—good for you.

Toxins and Detoxification

We are all exposed to many toxic chemicals. No matter where we live, and no matter what we do: mold toxins; heavy metals like Hg, As, Pb, Cd from air, water, and food; arsenic (As) from pressure-treated wood, electronics, herbicides; lead (Pb) from gasoline, water pipes, paints; cadmium (Cd) from fertilizers; copper (Cu) as a by-product of many industrial processes that builds up in soil and water; pesticides and herbicides like glyphosate; PAH (polycyclic aromatic hydrocarbons) produced from the combustion of fossil fuels; BPA (bisphenol A) and phtalates used to make plastics; dioxins and dioxin-like (PCBs) from industrial chemical processes; heterocyclic amines from grilling at high heat; hexane, a neurotoxic chemical used to extract more oil from nuts and seeds (including coconut). The list goes on and on.

These are in the soil, in the food, in the water, and in the air. They are also in the soaps, shampoos, creams, makeup, and the countless number of chemical cleaning agents manufactured and sold the world over that we use in our homes. Obviously, the more of them you avoid direct exposure to the better. Consuming toxin-free food as much as possible, and using the simplest and most natural household and personal care products is an essential first step. But if embryos, as protected as one could ever be deep in a mother’s wombs and behind several layers of protective membranes and mechanisms, are known to accumulate toxins, then what about us?

Most of these chemical toxins are fat-soluble. The biochemical processes that have evolved to transport and isolate environmental toxins, whatever they may be, into fat cells is a remarkable survival mechanism that has without a doubt played an important part in allowing living organisms to evolve over the past 3.5 billion years into increasingly more complex plants and animals. However, the Industrial Revolution led to an explosion of human-made chemicals into the environment the pace of which has never ceased to increase.

Did you know that strawberries contain a fibre called fisetin that help remove and eliminate senescent cells from the body, which is essential for prolonging health? But did you know that they are also some of the most chemically contaminated foods together with spinach, nectarines, apples, grapes, peaches, cherries, pears, tomatoes, celery, potatoes, bell peppers? Among the least contaminated are avocados, sweet corn, pineapple, cabbage, onions, sweat peas, papaya, asparagus, mangos, eggplant, honeydew, kiwi, cantaloupe, cauliflower, and broccoli.

In the past four decades only, more than 85 thousand different chemicals have been released into the environment. And the amount has only increased with time. One of, if not the most dangerous is Monsanto’s infamously well-known glyphosate because it is the most heavily used broad-spectrum herbicide of all time: from 1974 to 2016, soils, waters, plants, and animals have absorbed 1.8 million tons in the US alone, and 9.4 million tons worldwide.

Since 1974 in the U.S., over 1.6 billion kilograms of glyphosate active ingredient have been applied, or 19 % of estimated global use of glyphosate (8.6 billion kilograms). Globally, glyphosate use has risen almost 15-fold since so-called “Roundup Ready,” genetically engineered glyphosate-tolerant crops were introduced in 1996. Two-thirds of the total volume of glyphosate applied in the U.S. from 1974 to 2014 has been sprayed in just the last 10 years. The corresponding share globally is 72 %. In 2014, farmers sprayed enough glyphosate to apply ~1.0 kg/ha (0.8 pound/ acre) on every hectare of U.S.-cultivated cropland and nearly 0.53 kg/ha (0.47 pounds/acre) on all cropland worldwide. (Environmental Sciences Europe, 2016, 28:3)

Our fat cells are the body’s chemical storage facility. The more of them there are, the more chemicals can be stored. The less body fat there is, the less chemicals are stored. And if your storage unit is full, then no matter how hard you try, you won’t be able to add another piece of furniture. This is also true for the body’s chemical storage capacity.  This is both good and bad, but for different reasons.

More storage allows the organism to survive and function even in the face of significant chemical contamination. But the more chemicals are stored in the body’s fatty tissues, the more the organism as a whole becomes contaminated, and the less able it becomes to function optimally. A large dose of chemical exposure, say from a chemical leak, would require a large fat storage capacity in order to prevent overwhelming the rest of the body’s organs and systems. In such circumstances, someone with more body fat would be better off than someone with less.

But for most of us, this kind of acute exposure from a chemical accident in our near vicinity is not much of a concern. Moreover, you shouldn’t imagine that because chemical toxins are stockpiled in fat cells to minimise exposure in other tissues that they have no effect. Does burying radioactive waste makes it innocuous? It makes it a lot less dangerous and damaging, that’s for sure. But only in the short term, and to some extent, because the radioactive wastes leak out into the soil and the ground water.

The same is true for the chemicals stored in our fat cells. The storing of them protects us from the major toxic effects of direct and large scale exposures, but there is some leaking of these toxins out into the system, especially over time, and as our storage tanks get full. In general, therefore, this is what we should be concerned about: the low-grade chronic exposure and its long-term effects. And the less fat storage, the less chronic exposure there will be.

Fasting regularly and smartly, is the best way to both clear out the storage tanks, and  shrink the overall storage capacity for chemical toxins, thus minimising the amount of leaking taking place on a day-to-day basis. So, here’s what we need to know about this:

The more access to fat stores for fuel, the more toxins are mobilised and released from the tissues. This is what we stimulate in the most efficient manner when we fast, because the body needs to sustain all of its cellular processes by burning fat for fuel. But fat loss releases toxins in bloodstream. And this is good because toxins are mobilised.  Detoxification, however, must be supported in order for the toxins to be excreted. Otherwise they are released into circulation and can be very damaging. It is for this reason that water fasting is in general not a great idea: it releases too many toxins too quickly, and offers no mechanisms for bindings and eliminating them.

Once toxins are liberated, they must be bound to something in order to be eliminated. To be liberated, toxins are first made water soluble by the addition of a hydroxy (OH) radical. This is essential for elimination, but it makes the toxin more reactive. In a second stage, the now water-soluble but reactive toxin, is conjugated by the addition of a methyl, sulfur, or acetyl group, or else of an amino acid like glycine or glutathionine, in order to be made less reactive. After this, it is transported out of the cell to be eliminated through urine, sweat, or stools.

The detoxification process is supported by facilitating urination (drinking more); facilitating passive sweating (sauna, near-IR is best); eating cruciferous vegetables (broccoli, cauliflower, cabbage, Brussel sprouts, and kale); and supplementing with toxin binders (activated charcoal, chlorella, chitosan, psyllium husks, and citrus pectin). Actually, fat regain following fat loss, something which is very common, is almost certainly a protective mechanism to sequester the toxins that were released but not eliminated. And sweating has to be passive, because exercise suppresses detoxification: the system can be either in fight-or-flight or in rest-and-repair mode; exercise is associated with the former.  

Effective detoxification depends on healthy intestinal function. A compromised gut lining allows toxins from the foods or process of digestion to enter the bloodstream. This leads to chronic inflammation and a chronically triggered immune system that eventually results in autoimmune conditions. Fasting reduces gut permeability by enhancing integrity of gut lining: it induces a metabolic switch to fat-burning in the intestinal stem cells that significantly enhances their function, and promotes the healing of the junction between gut lining cells, as well as gut flora diversity.

Resistant starches are good because they feed the gut bacteria, and do not break down into glucose. They are found in under-ripe bananas, papayas, and mangos. Most notable is that if rice is cooked with coconut oil, allowed to cool for 12 hours, and reheated, it will increase in resistant starch by a factor of 10! This reduces calories that would be absorbed from the starch going to glucose by 60%! This simple preparation of the rice turns it from a damaging high-sugar food to avoid, into a beneficial prebiotic. Quite amazing, isn’t it?

How to fast: first steps

Now, before going any further, you should not fast if you are underweight or malnourished; pregnant or breastfeeding; or if you have excessively high uric acid levels. Fasting while underweight or malnourished will exacerbate the negative consequences of the malnourishment. Fasting while pregnant or breastfeeding will release toxins that could potentially be highly detrimental to the baby. And because fasting naturally increase uric acid levels due to the process of cellular cleaning, it could, if starting from an already excessively high concentration, be damaging to the organism. Otherwise, fasting will in general be very beneficial.

First, because fasting strongly influences the regulation of the circadian rhythm, and because one of the most important functions of sleep is to clean out the brain from the byproducts and wastes of its metabolic activity during the waking hours, we should never eat during the night, and always allow at the very least three but preferably four to five hours from our last bite to the time we go to bed. This is necessary to set the conditions for a deep, restorative sleep that keeps our brain in good shape. This is true independently of everything else. So, you can start doing this right away without even having to do any prolonged fasting.

Second, in order to avoid a negative impact on your mental and physical performance during the fast, the body should be adapted to using fat for fuel before you start fasting. You will feel shitty otherwise. I have written two articles that relate to this: Keto-adaptation for optimal physical performance and The crux of intermittent fasting. You should read both. It’s important to understand the biochemical and physiological foundations of why we do things in a particular way. Otherwise, we will lack the intellectual understanding on which depends our ability to make informed choices, but also the resolve to see them through.

Third, in order to have a smooth transition to longer fasting periods, you need to increase your fasting window gradually: to gradually increase the time between your last bite in the evening, and your first bite the next day. Let’s say your sleeping schedule is near optimal, sleeping from 22:00-23:00 to 7:00-8:00. Let’s also assume that you make sure you leave 4 hours before going to bed so that you have your last bite of food around 18:00. Everyone should fast for at least 12 hours. That’s the minimum to aim for, and it requires very little effort.

It would be much better to fast for at least 14 hours, in which case you would wait until 9:00 before having any food. A 16-hour fast would bring you to 11:00 for a late breakfast or early lunch. An 18-hour fast would have you eating lunch at 13:00. And a 20-hour fast means you would be having your first meal around 15:00. Take as long as you need to gradually go from the minimum of 12 hours to at least 16, 18, or even 20 hours.

When you can do this, you will know for sure that your metabolism is well fat-adapted, that your liver is producing ketones efficiently to nourish your brain during fasting periods, that the coarsest detoxification has to a great extent taken place during those weeks or months you have been adapting to longer fasting periods, and that you are now ready to extend your fasts to 24 or 36 hours once in a while, or as much as a couple of times a week. It is far more beneficial on the long term to fast for shorter periods of time every day, then it is to fast for a longer time less frequently. Because each time we fast and then refeed, we activate and benefit from the health-promoting and youth-enhancing mechanisms of the body.

Eating protein activates the mTOR (mammalian or mechanistic target of rapamycin) pathway, which is a powerful catabolic (tissue breakdown) that raises blood sugar levels. Hence, in general, we should keep protein intake to the optimal minimum for our needs. That’s something like this:

  • Young: 1g/kg of lean body mass per day
  • Older: 1.2g/kg of lean mass per day
  • Athletes: 1.5g/kg of lean mass per day

It’s important to remember that beyond the minimum optimal amount, protein intake should be adapted to level of activity: more activity means more protein, and less activity means less protein. Once you are well fat-adapted—after about 8 weeks on a very low carbohydrate diet—you should make a point of having a high fruit and/or starch day once a week. This will ensure that you maintain metabolic flexibility and a perky insulin response. Long term nutritional ketosis can lead to a sluggish insulin response, higher-than-optimal glucose levels and thus glycation, and otherwise unwanted biochemical and hormonal adaptations, which will prevent fat-loss and promote muscle breakdown. Variety stimulates metabolic flexibility.

But make sure it’s clear to you what this means: it means staying in nutritional ketosis for at least 5 days per week. And having a high-carb day means having between 100 and 150 g of sugar/starch from fruit, sweet potatoes, or rice. You should also make that high-carb day a low-fat day. In addition, digestion quality must remain your top priority. This means having your fruit or starches on their own as much as possible, and avoiding combining them with a lot of protein, which will compromise the digestion of both.

How to fast: specifics of keto-fasting

Very importantly, clearance of damaged cells and cellular debris or damaged organelles takes place during fasting, but rebuilding of organelles, cells, and tissues, most notably liver rejuvenation, occurs during refeeding.

Ketofasting following Dr Joseph Mercola’s method is partial fasting lasting ideally around 24 to 36 hours and up to 48 hours. It starts after the last meal of the day, extending over the course of the day following that, either ending with a meal 24 hours later; extending through a second night and ending at the start of the next day for the 36 hour fast; or extending 48 hours to latter part of the day. We saw why water-fasting is not something most of us should be doing in this day and age, and why it’s important to support the detoxification process while fasting. This requires some inputs: it requires protein (amino acids), mitochondrial support, and toxin binders.

The notion of breaking a fast is often taken as binary: we are either fasting or we are not. To some extent this is true. But in many ways it is not. It depends a lot on what it is that we ingest. The essential point is that the benefits of fasting come from maintaining very low blood sugar levels, remaining in nutritional ketosis, and therefore keeping the body in a cleanse-detoxify-repair mode.

Hence, there is a big difference between ingesting a teaspoon of coconut oil or a teaspoon of honey: both provide some calories, but the former supplies only fatty acids that actually promote nutritional ketosis, while the later supplies only simple carbohydrates that will immediately raise blood sugar levels and suppress ketosis, albeit temporarily, and more or less, depending on several other factors defining the body’s metabolic state and efficiency. So, in this regard, it’s better to think of fasting as grey rather than strictly black and white. Naturally, it’s really not an issue to have cucumber and celery with salt, for example.

Protein intake, needed to support the detoxifications processes, should be about half of your daily requirement, for example, 45 g instead of 90 g for 60 kg of lean body mass exercising 3-4 per week. During fasting, protein should not be branched-chain amino acids (BCAAs) nor animal protein rich in BCAAs, because they activate the mTOR pathway that inhibits autophagy. The rest of the calories should be from fat to reach 300-600 kcal from coconut oil, MCT oil, or caprylic acid. Even small amounts of 85% chocolate for which each 10 g square provides 5.3 g of fat, 0.8 g of protein, and 1.5 g of sugar, amounting to 62 kCal of which 48 are from fat, 3.2 from protein, and 6 kCal are from sugar. These are all considered supplemental levels.

In fact, because the purpose of eating protein is to supply amino acids in support of basic functions and detoxification, it is most effective to replace protein intake by an amino acid supplement. And because converstion of protein to amino acids is at most 1/3 efficient, meaning that the highest quality animal protein (e.g., beef) will yield at most 1/3 of its amino acid contents once digested, we can replace 45 g of protein by 15 g of amino acids. Splitting this intake into 4 doses of 4 g each makes for a good rhythm of taking these every couple of hours over 8 hours or so. And they can be taken together with the chlorella and spirulina supplements as well as the phospholipids.

Even though exercising suppresses hunger due to the increase of stress hormones, unfortunately, it also suppresses detoxification. For this reason, you shouldn’t do strenuous exercise on fasting days. Focus on rest and repair.

Supplements to support autophagy and toxin elimination include:

  • Ubiquinol 100-150 mg twice to support mitochondrial energy production, regulate gene expression of processes related to inflammation, growth, and cellular detoxification.
  • Phosphatidylcholine and broad spectrum phospholipid to support rebuilding and thereby eliminating chemicals from cell membranes, especially in the brain.
  • Probiotics (not dairy-based) to help rebuild/balance gut flora if digestion is suboptimal. Keep in mind that the natural flora of the gut is adapted and adapts according to food and drink intake, as well as to the daily rhythms.
  • Bitters to support the liver in cleansing and elimination (e.g., Dr Shade’s Liver Sauce by Quicksilver Scientific; Swedish Bitters by Flora or by Maria Treben; herbs like Gentian, Dandelion, Goldenrod, Myrrh.)
  • Binders to support elimination of toxins, all to be taken on an empty stomach to not interfere for nutrient absorption in the gut:
    • Psyllium husks (1 tbs 1-2 times/day) stirred into a large glass of water—binds to stuff in gut to eliminate in stools;
    • Charcoal capsules (3 caps 1-2 times/day)—binds and removes pathogenic bacteria, Pb, Hg, and excess Fe;
    • Chitosan (2-3 g)—binds and removes heavy metals and radionucleotides;
    • Modified citrus pectin (5 g 1-3 times/day)—binds and removes dead/weak cells;
    • Chlorella—binds and removes Hg, but also provides a balanced plant protein.

Refeeding is as important as fasting, because this is when the rebuilding takes place. It is very important to remember that. Unless you are overweight and carrying around a lot of energy reserves in the form of extra body fat, intermittent fasting is not a matter of replacing three meals with only one. You need to provide the body with all the energy, macro and micro nutrients it needs to thrive. This remains true under all circumstances. Therefore, you need to make sure to not fall into the trap of eating 1/3 of what you normally would, and grow thinner and  thinner with time. That is not the point, and is obviously not sustainable in the long term. You need to provide the bodymind all the nutrition and calories it needs. The key is that this is true on average: If you don’t eat for extended periods of time, you naturally need to eat more when you do.

Concluding remarks

As time goes on and as our technological means of detailed investigations at the cellular level improve, we discover more and more amazing health-enhancing mechanisms through which fasting acts on the organism to make it stronger, more resilient, more functional, and more youthful.

But beyond all the super cool details about the mechanisms by which fasting works its magic on our body and brain, the essential message here is that fasting is really good for us. It’s in fact so good that it’s amazing. And considering that it can stimulate the growth of new mitochondria and even new brain cells, we could even say that it’s miraculously good for us.

Having understood that it is the combination of the fasting period and the refeeding that follows which makes the magic happen, the natural question is how can we maximise this. And the answer is quite simple: we fast and refeed frequently. We fast long enough to activate the health-enhancing cleansing, detoxification, and preservation mechanisms and pathways, and refeed with the most nutrient dense and nutritious foods to maximise the efficiency and effectiveness of the rebuilding and renewal mechanisms and processes.

Once well keto-adapted, and after a period of gradual adaptation to longer fasts, it becomes very easy, and even natural, to fast daily from 18:00 to 12:00 or even 14:00. It even becomes easy and natural to eat two small meals or a single large meal just once a day. In this way, we can get the benefits of fasting and refeeding every single day. Of course, longer fasts of 2, 3, or 4 days will go deeper in stimulating the cleansing, preservation, and repair potential of the fast. But the longer the fast, the more difficult it grows to maintain, and the less frequently it can be done because the rebuilding in between fasts must also be longer. After all, our daily requirements for calories and nutrients is what it is, and although we can easily postpone providing the organism what it needs to function optimally for some time, everything it needs must eventually nevertheless be provided.

This is therefore what I do. A daily fast of about 16 to 20, and usually 18 hours. Once or twice a week a full day’s fast with a single large meal, but typically one small meal around 14 and one larger one around 17 or 18. A comprehensive daily supplement programme; bitters over extended periods a couple of times a year; binders like psyllium husks semi regularly according to need based on quality of bowel movements, and smell of underarm sweat; maximum hydration and alkalisation of body fluids during the fast; and most fundamentally, maximum nutrition at refeeding. Maximum nutrition and nutrient density from plant foods, and maximum nutrition and nutrient density from animal foods. And the final note I’d like to leave you with is this:

The process of ageing is the process of dying. And this process of ageing and dying is a very slow and gradual process of accumulating dead and dysfunctional cells, mitochondria, organelles, and tissues. As these accumulate, we age and die. The faster they accumulate, the faster we age and die. The more we have accumulated, the closer we are to the end, to the threshold beyond which the organism cannot sustain its activity. Fasting—and this is the single most essential benefit of fasting—is by far the most effective way to slow down, minimise, prevent this continuous accumulation of death, and instead promote and stimulate cleansing, renewal, and rejuvenation within this organism that we call our bodymind.

I hope all of what we saw here together will help you enhance your health, and improve the quality of your life.

This article is inspired by and primarily based on KetoFast by Dr. Joseph Mercola.

Thank you to all our patrons, and in particular to Eric Peters, Sappho Griffin, Toni Bates, and Bostjan Erzen, for their support. Become a proud sponsor of healthfully.net and join our patrons

Hypoglycaemia as a metabolic impossibility

Last Thursday, the day before the operation, the dental surgeon told me: “Make sure you have a good breakfast. I don’t want you to get hypoglycaemic. It will last several hours.” I replied: “I never have breakfast, and it is impossible for me to become hypoglycaemic.” He was like: “What? What are you talking about? I don’t understand what you’re saying.” I just said: “Because I don’t eat carbohydrates, I cannot become hypoglycaemic.” I’m not sure he understood what I meant, but I suppose that given my response, he figured I knew what I was talking about.

I’m sure you’ve heard, at one point or another in your life, someone say: “I’m hypoglycaemic, I need to have something”, and then seen them pull out a can or bottle of juice, an apple or an orange, a granola or a chocolate bar? Maybe you’ve said it yourself! It sounds scientific; like we know what we’re talking about. Don’t you think? Maybe we’ve heard a doctor or a nurse say it. Maybe we’ve heard other people say it, here and there. And over time, saying this has become common parlance in North America, and surely in the UK as well. But what does it mean? What do we mean when we say that?

Do you know why I said what I did to the dentist? Do you understand why it is impossible for me, (and possibly you too), to become hypoglycaemic, even without eating for 12, 24, or 36 hours? Why is it that so many people suffer from hypoglycaemia on a daily basis, especially type II diabetics, and all the while, I’m writing that it is ‘a metabolic impossibility’? Am I wrong? Am I lying? Am I confused or trying to be confusing? And why is there so much hype about hypoglycaemia? Just Google it and you’ll see: 6.35 million hits! There’s even a Hypoglycaemic Health Association!

First of all, if you don’t already know what it means, hypo means low, and glycaemia means ‘sugar in the blood’. So, hypoglycaemia just means low blood sugar. But the thing is that what people usually mean when they say this, is that they are feeling tired, slow, flat, low-energy, light headed, maybe even dizzy, and interpret these symptoms to reflect a state of low blood sugar, which it usually does. But there’s a caveat: different people will feel the same symptoms at different blood sugar levels! Isn’t that a little weird? Doesn’t that make you wonder about what this means and implies? If there is such as thing as hypoglycaemia, why would it be different for different people? Meaning, why would a certain blood sugar level be fine for one person, and too low for another?

But what is low blood sugar? What is high blood sugar? What is normal blood sugar? Do you have any idea? And how much sugar is that, actually, circulating in the bloodstream? Any idea about that?

Let’s make it simple. Most people have between 5 and 6 litre of blood. Let’s take 5 litres as our baseline to make the numbers easier. Most people, on average, have around 100 mg/dl of glucose in their blood (even if they should have less!) Since there are 10 dl in 1 litre, and 100 mg =0.1 g, this makes 5*10*0.1 g = 5 g. Think on that for a second: in your entire body, there are 5 litres of blood, and in this volume of blood, there are 5 measly little grams of glucose. That’s a teaspoon!

For very low blood sugar levels, we can go down to about 50 mg/dl (half the normal average). This would amount to just 2.5 g in your whole body! And for critically (as in dangerously) high levels, we can go up to around 400 mg/dl (four times the average). In this case, that would amount to still just 20 g! Therefore, we can say that at any given time in our body there is on average 5 g of sugar, very rarely less than 2.5 g, and only extremely rarely, when we are severely diabetic, up to 20 g. So, all things considered, it’s not much, is it?

Now, why is it that most people feel hypoglycaemic at one point or another if they don’t eat for a while, sometimes in as little as a few hours? Why would different people feel these symptoms more or less intensely? And why would different people feel the same unpleasant or even debilitating symptoms of hypoglycaemia at different concentrations of blood glucose?

Well, if you feel symptoms of hypoglycaemia it means that 1) your blood glucose levels are significantly lower than your own usual average level, the level at which your system and cells have gotten used to functioning. This average level could be 200, 150, 120, 100 mg/dl or whatever. And the lower threshold before you start feeling weak, tired or even dizzy could be 40, 50, 60, or even 90 mg/dl. In fact, diabetics or soon-to-be-diabetics, could be walking around, going about their business with an average of 150, 200 or even 300 mg/dl without knowing it, until they get a blood test and someone notices. And they would definitely feel hypoglycaemic at levels that could be quite high. How come?

The key to understanding this conundrum in the apparent subjectivity of hypoglycaemia is the notion of glucose tolerance. But what is glucose tolerance if it is not insulin sensitivity? And what is insulin sensitivity if it is not the flip side of insulin resistance? I hope that by now, having been reading this blog for a while, you know everything about insulin resistance, how it develops and how it manifests itself in the biochemistry and metabolic functions of the body. (If you don’t, then just reread the posts you’ll find in the Diabetes and Carbs categories.)

This notion of tolerance explains it all very neatly: with chronic exposure to glucose, (as in high average levels of glucose in the blood for an extended time), insulin resistance increases, and thus, insulin sensitivity decreases. As insulin sensitivity decreases, more insulin is needed to clear the glucose from the bloodstream, and more glucose stays in circulation longer. The cells get used to this high level of insulin, and become less and less sensitive to it, allowing less and less glucose to get in. When the level of glucose drops below the threshold at which the cells can use it without much effort, muscle but especially brain cells, we feel hypoglycaemic. This is why hypoglycaemia is defined on a subjective and relative scale that depends on our own cells’ sensitivity to insulin, the hormone that shuttles the glucose in. We become hypoglycaemic when the body cannot use fat to fuel its cells, and ketones to fuel its brain. And the more insulin resistant, the more prone to hypoglycaemia.

Moreover, insulin sensitivity, or resistance, exists on a continuous spectrum in the population. It goes from extreme sensitivity to extreme resistance. On the side of high resistance, we have type II diabetics; and on the side of high sensitivity, we have those people like me, and maybe also like you, who restrict carbohydrates, getting most of their calories from fat, and whose cells are consequently fuelled primarily by fat and not by glucose. This makes them, it makes us, not only highly metabolically efficient, but also impervious to hypoglycaemia.

This is why I said what I did to my dentist over the phone the other day: for a body whose cells are highly insulin sensitive from being minimally exposed to glucose/insulin in the bloodstream, the levels of which are delicately and sensitively regulated by the liver (glucose) and pancreas (insulin) throughout the day based on food intake, activity and stress levels, the cells are primed to burn fat efficiently, and the liver is primed to produce all the fat-derived ketones to nourish the brain, which they do far better than glucose can. For a body that works like that, it is physiologically impossible to become hypoglycaemic.

By the same token, it is also physiologically impossible to ‘hit the wall’, just because the cells are fuelled by burning fat, not glucose, and there is always a large reservoir of fat in the body, in terms of calories, at least an order of magnitude larger than the reserves of glycogen in the liver and muscles combined, and this, no matter how thin you may be. For example, even at 8% body fat (like me), which is quite low, a person weighing 63 kg (like me), has 5 kg of fat to draw on, providing a reservoir of 45 000 kcal! This is why we see more and more high level long distance athletes and professionals (like this one), and even power lifters (like this one) switching to a very low carb high fat diet (often abbreviated VLCHF). They do this to get lean and to tap into the metabolic advantages of nutritional ketosis.

Two final points:

1) Insulin sensitivity depends sensitively on exposure to insulin, which depends sensitively on the presence of glucose, which depends sensitively on carbohydrate intake. And it is as simple as this: the less carbohydrate, the less glucose; the less glucose, the less insulin; the less insulin, the more insulin-sensitive. This is always true even if different people have different genetic predispositions to insulin resistance.

2) Nutritional ketosis depends on the ratio of calories derived from fat to those derived from carbs, as well as on a specific maximum amount of insulin-stimulating carbohydrates per day. This threshold depends on each person individually. For one person it can be as high as 100-120 g, whereas for another it could be at low as 15-20 g. In addition, if you deplete your glycogen stores from going for a really long bike ride, for example, you can eat as much as 200 or even 300 g of carbs, and still remain in ketosis, because all of it will go to replete glycogen in the muscles and liver. In most people and in most cases, however, a standard guideline is less than 50 g per day. But, remember, the lower the better.

So, are you clear on what the deal is with hypoglycaemia? And now, what’s it gonna be: carbs, hypoglycaemia, feeling tired and irritable, low in energy and mentally slow, light headed and dizzy; or fats and protein, nutritional ketosis, feeling good and strong, high in energy and mentally sharp, stable and alert.  That’s a no-brainer, right? What do you say?

If you think this article could be useful to others, please ‘Like’ and ‘Share’ it.

The crux of intermittent fasting

It is less than futile, in fact, it is outright nonsensical, to argue in favour of or promote an explanation that is in contradiction with observational evidence. What is required is to find, or at least try to find, a sound and well-founded explanation. And not just for some of the observations, but for each individual observation, as well as for the entire ensemble of observations. This is what we should do.

Fasting means not eating; everyone knows that. The meaning of the word has been loosened to include not consuming appreciable amounts of calories, as in doing a green juice fast, for example, but which should instead rightly be called a cleanse. The expression intermittent fasting implies a cycle of some kind, and is used to mean not eating for periods of 16, 18, 24 or 48 hours, but on a regular basis, like every week or even every day.

Fasting has been known and recognised for its often quasi-miraculous curative effects for thousands of years. Indeed, it is possible to find accounts of individuals recovering from just about any ailment and disease imaginable simply from fasting long enough. It seems, however, that fasting as a healing modality, has, over the past couple of centuries, steadily grown less popular in the medical profession and, as a consequence, also in the general population.

A resurgence of scientific interest over the last decades in the benefits of fasting for treating various degenerative conditions like arthritis and cancer, but also for extending healthy lifespan about which I will write at one point in the future, has brought it back into the spotlight, especially in circles of optimal health enthusiasts, which includes some gym go-ers and body builders interested not so much in optimal health, but mostly in losing fat and gaining muscle.

Therefore, there has been quite a few people trying out or adopting intermittent fasting for periods of a few weeks to a few months, or even longer, but reading things here and there shows that they have had varying success given their initial motivations, whatever those might have been.

Ori Hofmekler was one of the first to popularise the idea of intermittent fasting with his book The Warrior Diet. He has continued to write and to encourage intermittent fasting for a wide range of benefits, especially in regards to the goal of improving body composition, as one of his last titles expresses perfectly: Maximum Muscle, Minimum Fat.

Dr Hertoghe, the world famous endocrinologist and anti-ageing specialist, as well as Mark Sisson (Primal Blueprint) have also been vocal and influential proponents of intermittent fasting for a while. More recently, Dr Mercola did several interviews with Hofmekler, and wrote a few articles on the topic, sharing his experience and enthusiasm for the health and fitness benefits intermittent fasting can bring. These are just some of the well known players that I know of and respect in the natural health community, that have endorsed and promoted this kind of cyclical fasting.

Naturally, as is the case for almost any topic we can think of, there are opposing opinions and, in fact, bashing of intermittent fasting as a means to improve health and body composition, especially in the popular fitness and gym culture. And, as is also the case for almost any topic we can think of, contradictory views and opinions are usually caused by misunderstanding, or at least, incomplete understanding of the elements involved, and in particular the more subtle ones.

On the one hand, we have the proponents claiming that we can very effectively get much healthier, with much improved energy levels, mood, digestion, and natural detoxification and excretion of metabolic acids; normalise and recover the optimal balance of specific hormones, and eventually, of the entire hormonal system; over time lose all excess body fat reserve, increase flexibility and hasten recovery, better preserve our precious muscle tissue and build more very efficiently. And these are just some of the claimed (but also documented) benefits of intermittent fasting.

On the other hand, the nay-sayers and bashers report that these claims are more than just false, they are, in fact, often the exact opposite of what they have found or seen for themselves or in others coming to them for help and expert advice. Reports of feeling really terrible, with massive headaches, bad digestion, awfully low energy levels, and thus, obviously, very bad and destructive moods; loss of some fat but also, over time, of lots or maybe even most of their muscle tissue; extreme hunger, with frightening ravenousness when evening mealtime comes around, leading to monstrous, uncontrolled and uncontrollable overeating without discrimination of food kinds or quality, and over time, showing obvious signs that can be identified as those associated with eating disorders.

How is it possible to have research, studies and documented cases—plenty of documented cases—that provide observational evidence—proof, if you prefer—that support the claims of both of these camps? How can we observe and actually measure such profoundly different consequences in different people that are supposed to follow comparable diets, consequences that are diametrically opposed to one another. In other words, observational evidence that appears to be completely and totally contradictory?

A simple approach, the one espoused by many, maybe most, of the intermittent fasting bashers, is to just say that proponents are wrong and imagining things, letting themselves be fooled by the hype, but actually blind to the reality of the detrimental consequences of practicing cyclical fasting.

For me, the only satisfactory approach is the one that seeks to explain all the observations, to reconcile all the observational evidence, and make sense of the entire ensemble of information available through a physiology and biochemistry based explanation that is complete. I also think it is fair to say that there are more better informed proponents than there are opponents, but this is not obviously the case, and I would thus not bet much on this claim.

Here it is, the crux of the matter, the one single crucial element needed to understand and explain the wide spectrum of apparently contradictory observations that is overlooked because it is misunderstood:

The body’s response to intermittent fasting is entirely dependent upon the state of one’s metabolism, and everything about it hinges on the physiology of nutritional ketosis. 

In fact, the vast majority of the benefits of intermittent fasting are those derived from nutritional ketosis but heightened by the fasted state, and therefore, can only become manifest if the fasting individual is keto-adapted and remains in nutritional ketosis most of the time.

You might be thinking: what in the world is nutritional ketosis, and where’s the explanation for the contradictory observations? Nutritional ketosis is the metabolic state in which the liver manufactures ketone bodies from fat to provide fuel for the brain cells that can only use glucose or ketones for their energy needs. This only happens if and when circulating insulin levels are low, and when blood glucose stays below 80-90 mg/dL for a period of 24-48 hours (generally speaking, on average, and in normal circumstance). The reason is fat will not be burned for fuel is there is plenty of glucose in the blood, and in order to burn fat, insulin must be low.

This metabolic state is induced either by fasting—this is the quickest but also most extreme way to do it, or by eliminating insulin-stimulating carbohydrates (sugars and starches) from the diet—this is by far the easier and obviously much more sustainable way to do it. The longer it is maintained, the better adapted the metabolism becomes. But before ketones are produced to fuel the brain, the body goes through metabolic changes to which it tries to adapt as best it can. The most important but also most severe of them all, is the fundamental shift from using glucose as the primary fuel, not just for the brain, but for all cellular energy needs in the body, to using fats, both from body fat reserves and from food.

The bane of our time is global, chronically elevated insulin levels. Hyper-insulinemia, as it is technically called, sits squarely as one of the root cause of all the diseases of civilisation that kill most (90%) of us today, more or less uniformly across the planet. What does this have to do with our considerations of intermittent fasting? It has everything to do with it:

Insulin is the master hormone that orchestrates the metabolism in what relates to storage and usage of macronutrient (carbs, fats, and proteins) at the cellular level.

Chronically elevated insulin always and inevitably leads to insulin resistance. Insulin resistance means that cells do not respond to insulin as they should, and require ever increasing concentrations of insulin in order to move glucose into the cell. And ever increasing concentrations of insulin means ever increasing inability to use fat cellular fuel, with particular difficulty in unlocking and tapping into the usually greatly overabundant reserves of body fat.

What is truly remarkable is that insulin resistance, even if it has been developing and growing steadily with each passing day and with each high carb meal or snack over our entire lifetime, it can be reversed in weeks when insulin-stimulating carbs are eliminated from the diet: 48 hours to enter nutritional ketosis; one week for water retention release, initial intestinal detox and basic adaptation to fat-burning; four weeks for functional keto-adaptation; and 8 weeks for complete keto-adaptation.

Eliminating insulin-stimulating carbs eliminated the need for large insulin secretions by the pancreas. Therefore, both glucose and insulin concentrations steadily decrease with time, and eventually fat-burning and ketone production kicks in, marking the first step in the transition of the metabolism from sugar-burning to fat-burning, which is what we referred to as fat- or keto-adaptation.

There is a catch though: before fat-burning and ketone production begins, the metabolism of the insulin resistant individual will go through withdrawal from its sugar addiction. First, sugar levels start to drop. After a number of hours, 3 to 4 hours say, blood sugar is too low to supply enough fast-burning glucose to cells for their metabolic activities. Because insulin remains high, and because the body is highly insulin resistant, as we said, it is not possible to use fat from the body’s fat stores. Therefore, it is the liver that comes to the rescue and begins to convert its stores of glycogen into glucose and pumping that into the bloodstream to provide cellular fuel.

Within a few hours, however, the glycogen in the liver is depleted, and blood sugar drops once again, and lower still. Because the body remains unable to tap into its fat reserves due to the state of insulin resistance, it has, at this point, no choice but to turn to muscle tissue, from which it is far easier to breakdown protein and manufacture glucose than it is to start burning fat. And thus, the muscles are eaten away in order to provide the glucose to all of the multitude of insulin resistant (sugar-addicted) cells throughout the organism.

We now come to the final analysis of our observational evidence in regards to intermittent fasting, and consider two scenarios that can explain, as it rightly should, the ensemble of observations in its entirety, and thus clarify and reconcile the apparent contradictions that are seen, and which lead to serious confusion about the issue, even, and maybe especially, among our health, fitness and bodybuilding experts.

Scenario 1: We take a perfectly keto-adapted person who has been eating a diet devoid of insulin-stimulating carbs for a long time, and who therefore always has very low glucose and insulin levels, and as a consequence, exquisite insulin-sensitivity. What happens if they stop eating? Nothing special, really. Their body is always using fat and ketones to supply all healthy body and brain cells with their metabolic energy needs. So, if there is no fat that is provided through the digestive system, then it is taken, without any trouble or noticeable changes in energy levels or concentration, from the body’s fat reserves that are always plentiful, even in the leanest among us with single digit body fat, because 1 gram provides 9 calories, which means that we need only about 200 g for a whole day of normal activities, and have at least 5 kg at any given time (8.5% fat on 60 kg body weight).

Moreover, if we exercise during the fast, there is no noticeable difference because at low intensity, cellular energy needs are taken care of by fat which is continuously released from the fat stores into the bloodstream, while at higher intensity the glycogen stored in the muscle cells themselves, can be used in the form of quick burning glucose together with additional supply from the liver than converts its stores of glycogen if need be (if stress hormones are secreted).

So, biking and working out with weights, for example, is perfectly fine and actually feels great. Even more interesting is the fact that stimulating the muscular system by exercising while fasting triggers the release of various hormones in addition to growth hormone for which there is nothing more effective than fasting, whose purpose is primarily to preserve those physiologically important muscle tissues as essential for functional survival, while breaking down to recycle the proteins of other tissues which are not required like lumps, tumours, and scar tissue. And this means that the hormonal environment created by exercise under fasting conditions is conducive to both preserving and building more muscle, all the while also expediting and maximising fat-burning. And this is what is observed.

Hunger is present at times, but is certainly far from being problematic. There are no headaches, no stomach pains, no sleepiness, no scattered mental discursiveness, no problems concentrating or working. Sitting down to eat the evening’s nutrient-dense, enzyme-rich and high fat meal with adequate amounts of protein for tissue repair and muscle building, is nourishing, perfectly satisfying, and well digested throughout the evening and night, as long as we eat several hours before going to bed. No over-eating, no cravings, no psychological disturbances, no problems at all. A picture of perfect metabolic efficiency.

Scenario 2: We take an average but pretty active person from the general population who eats a standard diet with plenty of insulin-stimulating carbs, both simple sugars, and complex carbs in the form of pasta, rice, whole grain bread, etc (70% of calories), and who therefore always has high blood glucose and insulin levels, and as a consequence, pretty strong insulin resistance. What happens if they stop eating? We saw this earlier: blood glucose drops, but not insulin; the liver starts to pump out glucose to pick up the slack, and runs out after about 3-5 hours; sugar drops once more, but not really the insulin; since fat stores cannot be tapped into, muscle tissue is broken down to manufacture glucose; longer period of fasting means more muscle breakdown.

If we exercise gently, things are fine at first because we can tap into the glycogen stored in the muscles, but will soon get much worse because we increase the energy demands, but continue to be unable to use body fat stores, and therefore increase the rate at which muscle tissue is broken down, especially if we do weights and high intensity training.

Low intensity aerobic exercise depletes glycogen from the muscles and when it runs out, we feel exhausted, completely flat out. (This is the same as hitting “the wall” in long distance events, and only occurs because the body cannot readily tap into its fat reserves: a well keto-adapted athlete never really hits any such walls!) Far worse is high intensity exercise, which causes more intense and faster muscle breakdown, the higher the intensity, the more muscle breakdown.

Waking up in the morning after a night’s sleep (and unconscious fast), we are starving, dearly longing for the bread, the jams, the cereals, the orange juice, the waffles, the maple syrup, and everything else we can imagine, but we hold out and go to work. Every hour is excruciating, terrible headache, hunger pains throughout the abdominal cavity, but when these subside, we are falling asleep, with a complete inability to concentrate on anything at all. We feel like shit.

By the time evening rolls around, we are so ravenous we would eat a horse. So we sit down and eat, and eat, and eat everything we can get our hands on: pizza, pasta with sauce and cheese, garlic bread with butter, steak and potatoes or french fries, and then desert, sweets, oh man, we waited all day to eat, and now we can eat anything and everything we want, because tomorrow we’ll be starving again for the whole day. We get up in the morning, and the whole cycle starts over again.

Over time we kind of get used to it, but because we don’t understand the most essential element of the whole thing—nurturing nutritional ketosis—we remain just as insulin-resistant, every day we feel shitty, every night we eat like a pig, and throughout the whole time, more or less, we break down muscle, and our insulin resistance prevents appreciable fat loss. After doing this for a while and seeing the detrimental effects of this regime, we go seek help from a fitness expert. They tell us that this intermittent fasting thing is a load of shit, and as them, grow instantly convinced that all the stuff people say about the benefits it can bring for optimal health and improved body composition is also a load of shit: if it didn’t work for me, then it simply cannot work for anyone.

Unfortunately, neither we nor the fitness expert understands enough physiology, biochemistry, and endocrinology to be able to make sense of these conflicting and contradicting accounts, personal experiences, and observations reported in the scientific literature, and just settle into this view that it really is a load of BS, and that it might work a little, sometimes, on some people, but not on others, and no matter what, it always leads to pathological states of mind, if not full fledged eating disorders.

It is my hope, however, that you are now able to see how these very observations, as conflicting, contradictory, and certainly quite puzzling as they may seem at first, can be explained and reconciled marvellously well in light of a better understanding of the basic principles of energy metabolism, and of the remarkable but unfortunately almost universally misunderstood state of nutritional ketosis, that most medical professionals usually mistake for the pathological condition of diabetic ketoacidosis.

Finally, in closing, I have a confession to make: I have been experimenting with intermittent fasting in one form or another for many years now. I never eat anything before midday, and on most days until about 14:00, which makes it an approximately 18-hour fast from 20:00 the night before. On weekends, I fast until noon, and then go do weight training. On those days, I usually eat for the first time around 17:30, and make that my single meal of the day. On some days I eat a large lunch and dinner to increase my overall calorie and protein intake. I usually workout 3-4 times a week, and usually in the late afternoon-early evening.

I have not experienced loss of muscle since I dropped the insulin-stimulating carbs from my diet in 2007. Both muscle tone and strength is maintained very well even after long periods without resistance training. I have, however, never made a particular effort to gain muscle mass. This year, I would like to see how much muscle I can put on, and will thus put the science to the test for myself. If you are interested, don’t worry, I’ll keep you posted. If you’re not, then that’s fine too.

But if there is a single thing you must remember from what I wrote, it is this: you can only really benefit from intermittent fasting when you are keto-adapted, and remain in a state of nutritional ketosis the majority of the time. Otherwise potential benefits are lost, and the practice can become rather detrimental.

hunterslookingoverplain

How long do you think these hunters hunt each day? Do you think they have a big breakfast before going, or a large lunch while they are out? How long do you think they are out before they settle back around the fire in their village to have their main meal of the day? And what do you think they will eat when they do return with their catch of the day?

(This article was written after reading this article by Dani Shugart on T-Nation sent to me by a friend who knew I would have some remarks to make, and probably some clarifications to bring to it.)

Cure diabetes in a matter of weeks

Both the incidence and growth rate of insulin-resistant diabetes have reached epidemic proportions in many countries. It is most remarkable in the US with probably close to 30 million by now, and thus about 10% of the population (1, 2). Globally, the numbers are even more impressive: 370 million with diabetes predicted to grow to 550 by 2030 (3). This entails that as a disease, type-II diabetes (90% of diabetics) is one of the fastest growing causes of death, now in close competition with the well-established leaders, cardio-vascular disease and cancer, that each account for 25% of deaths in more or less all industrialised countries.

Insulin-resistant diabetes is very similar to both vascular disease (cardio and cerebro) and cancer, as well as intestinal, kidney, pancreatic and liver disease, arthritis, Parkinson’s and Alzheimer’s, in the sense that it is also a degenerative disease that develops over a lifetime, or at least over several decades. It is, however, quite different from all other chronic degenerative diseases because it is, in a way, the ultimate degenerative disease, in which the occurrence of all others increases markedly, and in some cases two to four times (4).  That’s not 10 or 15%, this is 200 to 400% more!

For this reason alone, it seems clear that all these degenerative conditions are intimitely related, and that furthermore, understanding insulin-resistant diabetes will most definitely give us keen insights into the genesis of degenerative diseases in general.

What boggles the mind is that, in a very real sense, we understand precisely and in exquisite detail how and why insulin-resitant diabetes develops, how and why it is related to all other degenerative diseases, and consequently, both how to prevent diabetes and all disease conditions for which it is a proxy, and why what is needed to achieve this actually works (5, 6).

In fact, type-II diabetes can be cured; not just controlled or managed, but cured; not just partially or temporarily, but completely and permanently. And this, in a matter of weeks.

This may seem simply impossible to the millions of suffering diabetics that live with their disease for years and more often decades, but it is the plain and simple truth, which has been demonstrated by more than one, but unfortunately rather few exceptional health care practitioners, already several decades ago by Robert Atkins (7), and more recently by Ron Rosedale and Joseph Mercola, for example (89), in a remarkably repeatable, predictable and immensely successful manner on most probably tens of thousands of people by now.

About insulin and glucose (or should it be glucose and insulin)

Insulin is a master hormone one of whose important roles is to regulate uptake of macronutrients (carbs, proteins and fats) by facilitating their crossing the cellular membrane through channels guarded by insulin receptors, from the bloodstream into the cell, either for usage or storage. It is for this role that insulin is mostly known.

However, arguably insulin’s most important and critical role is the regulation of cellular reproduction and lifespan, a role which is, as amazing as it may seem, common to all animals that have been studied from this perspective, from microscopic worms to the largest animals.

As such, insulin is a master and commander for regulating reproduction and growth in immature and therefore growing individuals, and regulating lifespan and ageing in mature and therefore full-grown adults (10).

Insulin is absolutely essential to life because in its absence cells can neither use glucose—a most basic cellular fuel, nor reproduce correctly—making growth impossible. It is, however, needed in only very small amounts. Why? Because insulin is very damaging to tissues and especially blood vessels, something that has been well known for a long time (look at this short review on the role of insulin in atherosclerosis from Nov 1981—that’s 32 years ago!, and you’ll see what I mean.)

Insulin is secreted by the beta cells of the pancreas in response to glucose concentration inside of these. As blood passes through the pancreas, these special cells that produce and store insulin, sense how much glucose there is by taking it in, and release insulin into circulation proportionally. This release is pulsed (while eating, for example) with a period of between 5 and 10 minutes, but only in response to blood sugar concentration, meaning that insulin is released only if blood sugar rises above the individual’s threshold, which depends on the metabolic and hormonal state of that individual.

However, it is important to note that pretty much no matter what the metabolic or hormonal states may be, eating fat and having fatty acids circulating in the bloodstream does not stimulate the release of insulin, while eating protein, in particular the animo acids arginine and leucine, does, albeit a lot less than glucose. This is because insulin is generally needed for cells to take in and use amino acids.

An insulin molecule that has delivered a nutrient to a cell can be degraded by the cell, or it can be released back into the bloodstream. A circulating insulin molecule will be cleared by either the liver or the kidneys within about one hour from the time of release by the pancreas.

Exposure to most substances, including lethal poisons such as arsenic and cyanide, naturally and systematically decreases sensitivity, or from the reverse perspective, increases resistance to it (as demonstrated by generations of Roman emperors and their relatives). This applies to cells, tissues and organs, and happens in the same way for biochemical molecule like messenger hormones, for the one that concerns us here, insulin. Thus, as cells are more  frequently and repeatedly exposed to insulin, they lose sensitivity and grow resistant to it.

Insulin primarily acts on muscle and liver cells where glucose is stored as glycogen, and on fat cells where both glucose and fats are stored as … fat, of course. Muscle cells grow resistant first, then liver cells and in the end, fat cells. Fortunately or unfortunately, endothelial cells (those that line the blood vessels), do not become resistant to insulin, and this is why they continue to store glucose as fat, suffer severely from glycation, and proliferate until the arteries are completely occluded and blocked by atherosclerotic plaques.

What happens when a large portion of the muscle and liver cells, and enough of the fat cells have become insulin-resistant? Glucose cannot be cleared from the bloodstream: it thus grows in concentration which then stays dangerously high. This is type-II, adult onset, or most appropriately called, insulin-resistant diabetes.

Unnaturally high glucose concentrations lead to, among other things, increased blood pressure, extremely high rates of glycation (typically permanent and fatal damage) of protein and fat molecules on cells throughout the body, heightened stimulation of hundreds of inflammatory pathways, and strongly exaggerated formation of highly damaging free radicals, which, all in all, is not so good. This is why insulin is secreted from the pancreas so quickly when glucose is high in the first place: to avoid all this damage and furiously accelerated ageing of all tissues throughout the body.

The five points to remember

  1. Insulin is a master hormone that regulates nutrient storage, as well as cellular reproduction, ageing and therefore lifespan.
  2. Insulin is vital to life, but in excess concentrations it is highly damaging to all tissues, especially blood vessels.
  3. If blood sugar is high, insulin is secreted to facilitate the uptake of the glucose into cells, but at the same time, because it is present, also promotes the storage of amino and fatty acids (protein and fat); if blood sugar is low, insulin is not secreted.
  4. Chronically high blood glucose is remarkably damaging to the organism through several mechanisms that are all strongly associated with degenerative disease conditions in general.
  5. Chronically high blood glucose concentration leads to chronically high insulin concentration; chronic exposure to insulin leads to desensitisation of muscle, liver and fat cells, and, in the end, to type-II or insulin-resistant diabetes.

And in this succinct summary, in these five points to remember, we have the keys to understanding not only how diabetes develops and manifests, to understand not only the relationship between diabetes and other degenerative diseases, but also to understand how to prevent and cure diabetes as well as degenerative conditions in general.

And I’m suppose to say …

But you already know what I’m going to say:

Because the basic, the underlying, the fundamental cause of insulin-resistant diabetes is chronic over-exposure to insulin, it means that to prevent—but also reverse and cure it—what we need is to not have chronic over-exposure to insulin. And this means to have the very least, the minimal exposure to insulin, at all times, day after day.

The good news, which is indeed very good news, is, on the one hand, that it is utterly simple to do and accomplish, and on the other, that almost independently of how prone we are to insulin resistance (genetically and/or hormonally) or how insulin-resistant we actually are right now, insulin sensitivity can be recovered quite quickly. And here, “quite quickly” means in a matter of days, which is truly remarkable in light of the fact that our state of insulin resistance grows over decades, day after day, and year after year. It is rather amazing, miraculous even, that the body can respond in this way so incredibly quickly.

Now, type-II diabetes is nothing other than extreme insulin-resistance. Naturally, the longer we are diabetic, the more insulin-resistant we become. But unbeknownst to most (almost all MDs the world over included), if your fasting blood glucose is higher than 75-80 mg/dl or your insulin higher than 5 (mU/L or microU/ml), then the muscle and liver cells are insulin resistant. And the higher the insulin, the more resistant they are. In fact, if you have any amount of excess body fat, your cells are insulin resistant. And the more body fat, especially abdominal but also everywhere else, the more insulin resistant they are.

Because insulin sensitivity is lost gradually over our lifetime through daily exposure, some consider that everyone is becoming diabetic more or less quickly, and that eventually, if we live long enough, we all become diabetic. But this is only true in a world where virtually everyone suffers from chronic over-exposure to glucose and insulin. It is not true in a world in which we eat and drink to promote optimal health.

In practice, because basically everyone is more or less (but more than less) insulin-resistant, concentrations around 10 mU/L are considered normal. But when I wrote earlier that insulin is vital but needed in very small amounts, I really meant very small amounts: like optimally between 1 and 3, and definitely less than 5 mU/L (or microU/mL; and the conversion from traditional to SI units is 1 mU/L = 7 pmol/L).

So how do we do it?

You already know what I’m going to say:

Because insulin is secreted in response and in proportion to glucose concentration, when it is low, insulin is not secreted. Therefore, insulin sensitivity is regained by completely eliminating insulin-stimulating carbohydrates. This means zero simple sugars without distinction between white sugar, honey or fruit; zero starchy carbs without distinction between refined or whole grains, wheat or rice, bread or pasta, potatoes or sweet potatoes; and zero dairy, which triggers insulin secretion even when sugar content is low. It also means minimal protein, just enough to cover the basic metabolic needs (0.5-0.75 g/kg of lean mass per day). Consequently, it means that almost all calories come from fat—coconut oil, coconut cream, animal fats from organic fish and meats, olive oil and avocados, as well as nuts and seeds—and that the bulk of what we eat in volume comes from fibrous and leafy vegetables.

And what happens? In 24 hours, blood glucose and insulin have dropped significantly, and the metabolism begins to shift from sugar-burning to fat-burning. In 48 hours, the shift has taken place, and the body begins to burn off body fat stores, while it starts the journey towards regaining insulin sensitivity. In a matter of days during the first couple of weeks, the body has released a couple to a few kilos of water and has burnt a couple to a few kilos of fat. We feel much lighter, much thinner, much more flexible and agile, and naturally, much better. In four weeks, blood sugar and insulin levels are now stable in the lower normal range. All of the consequences and side effects brought on by the condition of insulin-resisitant diabetes decrease in severity and amplitude with each passing day, and eventually disappear completely. In eight weeks, the metabolism has fully adapted to fat-burning as the primary source of energy, and we feel great. (See 11 for more technical details.)

The result is that within a matter of weeks, we are diabetic no longer: we have regained insulin sensitivity, and have thus cured our insulin-resistant diabetes. Over time, a few months or maybe a few years, feeling better with each passing day, there remain very few if any traces of our diabetes, and we live as if we never were diabetic. Amazing, isn’t it? So simple. So easy. So straight-forward. And yet, still so rare.

And what about the relationship between diabetes and heart disease, diabetes and stroke, diabetes and cancer, diabetes and Alzheimer’s? Why do diabetics suffer the various health problems that they do, like high blood pressure, water retention, blindness, kidney disease, and how do those come about? What of the lifespan-regulating functions of insulin, how does that work? All these interesting and important questions and issues will have to wait for another day. This article is already long enough.

If you enjoyed reading this article, please click “Like” and share it on your social networks. This is the only way I can know you appreciated it.