Understanding the role of vitamin K-dependent proteins in vascular calcification

What if the process of arterial calcification was regulated from within the cells of the blood vessels, and that it had nothing directly to do with what you ate and what circulated in the bloodstream because calcification takes place not anywhere near the surface but inside the blood vessel wall?

What if the process of arterial calcification was actually a process by which muscle is transformed into bone, a process by which vascular smooth muscle cells transform themselves into bone cells which then actually build bone tissue within the blood vessel wall?

And what if apoptosis preceded calcification, what if cell death was what triggered the process of calcification, and it was the apoptotic bodies of dead vascular smooth muscle cells within the blood vessel wall that served as the nodes around which calcium crystals formed?

Would you not find this shocking? Find it incredible that any of these could be true, let alone all of them? It’s entirely not at all what we’ve been told by “health experts” and “health authorities” for more than half a century!

All of these statements are hard to believe. It is especially unbelievable that muscle cells can change into bone-building cells, and begin to grow bone tissue within the artery wall. It sounds surreal, kind of like science fiction. But it isn’t. All of it is true. All of this has been observed.

Interesting, you may think, but what does any of this have to do vitamin K? Everything! It has everything to do with vitamin K.

How clever we are

The sophistication and precision of biochemical reactions and processes in animals and humans are mind blowing. Understanding how they work is a wonderfully noble endeavour that is certainly very fulfilling in its own right. In some cases though, it can be a matter of life and death. And in the case of the processes related to and regulated by vitamin K dependent proteins it definitely is.

This is not an exaggeration to push you to read on. It’s a statement of fact. And you’ll see how this is true by the time we finish. I believe it is essential, for each one of us to understand the details of how things in our body work and how they are related and connected in order to appreciate their significance and their importance.

We are so clever. We can figure out such complicated things when we put our minds to it. Things like complex biochemical pathways, or long chains of enzymatic reactions that, one step at a time, transform molecules from one form into another. And it is this kind of cleverness that has enabled us to develop the hundreds of different types of medications we can find today in drug stores.

We have designed medications to address basically every symptom we can think of. If it’s a symptom we’ve had, it’s most likely a symptom that many others have or have had. And if many have the same or a similar symptom, we can be sure that at least one pharmaceutical company will have made a drug for it.

Warfarin was developed in the 1950s to prevent or at least suppress coagulation, and in so doing help prevent or at least reduce the number of strokes and heart attacks. Because so many people either suffer from, are susceptible to, or are at risk of cardiovascular disease, many people take warfarin.

And what I mean by many in this case is between 20 and 30 million prescriptions per year in the United States alone. The number went up to 35 million in 2010 and dropped back to 20 million in 2015. That’s a lot of warfarin pills! You can see the stats here (http://clincalc.com/DrugStats/Drugs/Warfarin). Warfarin is in the top 50 drugs. It’s 42nd down the list. Just below aspirin at 39, insulin at 36, and ibuprofen at 34, as you can see here (http://clincalc.com/DrugStats/Top200Drugs.aspx).

Surely close to every household in the western world will have somewhere in a bathroom cupboard or drawer a bottle of aspirin or ibuprofen. Given how close to warfarin they are in popularity of usage, there’s clearly no need to even say that this anti-coagulant drug is in broad and widespread use.

Isn’t this great, though? Millions of people at risk of having blood clots that would possibly cause them a stroke or heart attack, protected by taking a little warfarin every day? Yes, I suppose in some ways, it is, if these people are actually at risk. But, unfortunately, with a drug like that, we can be pretty sure that most are taking it preventatively, as in, just in case. And this is a problem.

Warfarin works by disrupting the process that leads to the activation of coagulation factors. The blood’s ability to form clots quickly is one of its most vital functions, because without it we would just bleed to death from a flesh wound. Evolutionarily, we simply would not have made it to here without this protection mechanism that ensured that when we were wounded, the blood would immediately thicken to stop it bleeding out of our body by forming clots at the surface of the open wound as fast as possible. The special proteins responsible for regulating coagulation are vitamin K-dependent proteins (VKDPs).

It has taken a long time to understand, first of all, that there wasn’t just vitamin K, but in fact two different kinds of vitamin K. It is also true that it has taken a long time to identify the major vitamin K-dependent proteins and figure out how they work. We are talking about 40 years from the 1950s to the 1990s. So, you really shouldn’t be surprised if you haven’t read or heard about this before.

But today, a lot has been understood through in vitro and in vivo observations, trials and studies both in animal models and in humans. And even though we will inevitably continue to deepen our understanding of the subtleties of the molecular mechanisms, the species, and the interactions involved in the life of cells and proteins in how they affect the state of our blood vessels and organs, this is a sketch of the picture we have at this stage.

Vitamin K dependent proteins

There are about twenty identified VKDPs belonging to two classes: hepatic—those produced by the liver, and extra-hepatic—those produced in other tissues. Those from the first class are the most well-known and well-studied. They are the coagulation factors (II, VII, IX, and X) manufactured by the liver and activated within it before being pushed into the bloodstream and circulated throughout the body to maintain a healthy coagulation response in case it is ever needed. These are the ones targeted by warfarin. Naturally, since that drug has been around since the 1950s, the role and function of these vitamin-K dependent coagulation factors have also been known at least since that time.

The second class is less known and less studied but has—luckily for us—gained much more attention in the last two decades. It includes three very important proteins whose functions are essential in maintaining healthy blood vessels. But unlike the coagulation factors produced in the liver, these proteins are instead produced by the vascular smooth muscle cells and activated there locally in the vasculature. These vascular health factors, we call them that in analogy to but to distinguish them from the coagulation factors, were identified much more recently in the 1980s and 1990s. All are proteins that contain gamma-carboxyglutamic acid abbreviated Gla.

Some important ones for us here are osteocalcin, for which it took 30 years to be identified as an inhibitor of calcification when it was discovered in vitro to prevent the precipitation of crystals in a supersaturated calcium solution. This means that without it, calcium crystals would have inevitably formed spontaneously in the solution. Osteocalcin is also called bone Gla protein. Growth arrest specific protein 6 is involved in the regulation of cell proliferation, and seems to inhibit premature cell death. And the most important one in relation to soft tissue calcification, matrix Gla protein abbreviated MGP.

Matrix Gla protein was originally isolated from bone, but it has been found to be expressed in several other tissues including kidney, lung, heart, and—most critically—vascular smooth muscle cells or VSMCs. It is now known to be the most potent inhibitor of calcification of blood vessels, and even though the liver does produce and secrete MGP into the bloodstream, only the MGP produced in the vasculature inhibits calcification.

Besides being produced in different tissues, another important difference between the two classes of VKDPs is that the liver-produced coagulation factors are phylloquinone—or vitamin K1-dependent, whereas the vascular smooth muscle cell-produced proteins are menaquinone—or vitamin K2-dependent. In light of the fact that it is rather hard to find vitamin K1 insufficiency with a diet that contains at least some green plant foods, while the exact opposite is true for vitamin K2 of which the western diet is practically devoid, this difference is highly significant.

Both vitamin K1 and K2 are absorbed in the second and third portions of the small intestine, the jejunum and ileum, K1 is delivered to the liver, whereas K2 is transported via LDL and HDL to other organs. K1 is mainly found in the liver, whereas K2 is preferentially stored in peripheral tissues, with the highest levels in the brain, aorta, pancreas, and fat tissues. This obviously attests to the importance of these essential vitamins.

While vitamin K1 and K2 are really two different vitamins with different functions, transport mechanisms, and distribution in the tissues, and while there are several differences between the vitamin K1-dependent and the vitamin K2-dependent proteins, these have one essential thing in common. This is, as their name says, that they are vitamin K-dependent. What this means is that all these proteins share the same enzymatic chain of activation—whether it mediated by K1 or K2—that transforms them into their biologically active form, the form they need to have in order to do the things they are meant to do.

All VKDPs must be carboxylated in order to be activated. The process is complicated and not yet completely understood. We know that it is targeted to the glutamic acid (Glu) residues on the protein that must be made into gamma-carboxylglutamic acid (Gla). We also know that the process is mediated by the enzyme gamma-glutanyl carboxylase (GGC), and that vitamin K is the main co-factor that enables the enzyme to perform the activation. In the end, the process leads to the addition of a carbon dioxide molecule to the gamma-carbon of Glu, which transforms it into Gla. However, it is the reduced form of vitamin K that is required.

Vitamin K, whether it is the plant-based phylloquinone (K1) or the animal-based menaquinone (K2), enters the body through the diet in its non-reduced form. Reduction involves the addition of hydrogen in molecular form, H2, to make KH2. Transformations of this kind are generally always done by enzymes, and so is this one. In this case the enzyme is vitamin K epoxide reductase (VKOR). Its action is essential because it is the reduced form KH2 that acts as the co-factor in the process of carboxylation.

The energy released by the oxidation of KH2 drives the addition of the carboxyl group unto the glutamic acid residues. But the oxidised form of vitamin K, KO, can subsequently be reduced again to KH2. Thus vitamin K is first reduced, then oxidised to help push the carboxyl group unto the glutamic residue, and then reduced once more to start the whole cycle again. This cycle is called the vitamin K epoxide reductase or VKOR cycle.

For this class of proteins, the VKDPs, activation through carboxylation means for them to acquire the structure and properties needed to bind calcium in order to transport it. You may recall from a previous chapter in the story of vitamin K2, matrix Gla protein generally transports calcium out of soft tissues in order to prevent calcification, and bone Gla protein generally transports it into bones and teeth to prevent osteopenia, osteoporosis, and tooth decay.

The big red flag

Now you understand why it is that when, in our remarkable cleverness, we understood that the main coagulation factors depended on the action of these enzymes to be activated and rendered functional, we naturally concluded that the best way to prevent clot formation would be to prevent coagulation, and that this could be achieved by blocking these enzymes from doing what they are intended to in a healthy organism. This is precisely what warfarin does.

And it does it well. Otherwise it wouldn’t have become as commonly used as it is. And we can be certain it has saved a lot of people much of the pain and possibly life-threatening conditions that a blood clot could have caused them. The problem is that the vascular health factors so critical for maintaining healthy blood vessels, depend on the same enzymes for activation as do the coagulation factors. Preventing the carboxylation of coagulation factors, prevents, in exactly the same way, the carboxylation of the vascular health factors.

This was only understood to be a major problem relatively recently. We first had to understand that there isn’t just one kind of vitamin K, but that there are two, and that they are very different in their functions. We had to understand that both vitamin K1 and vitamin K2-dependent proteins rely on the same enzymes to get activated. We had to understand the carboxylation process by which they are activated. And we had to understand that MGP, BGP, and Gas 6 are vitamin K-dependent proteins, that they are specifically vitamin K2-dependent, how they are activated, what they actually do in our veins and arteries, and what happens if they can’t do what they are designed to do.

A major red flag about anticoagulants and warfarin came up from what was seen in mice. The first part of the study was with MGP-knockout mice, (mice in which the MGP-encoding gene was deactivated). They were observed to have stunted growth from the premature calcification of the epiphysis—the part at the end of bones and at the junction with the cartilage of the joint which allows the bone to grow longer. As as soon as the epiphysis calcifies, longitudinal growth stops. But this was the least severe of the problems that were observed.

The MGP-knockout mice very quickly developed severe arterial calcification, and died highly prematurely, within 6 to 8 weeks, of strokes, heart attacks, and rupture of the aorta. Normal lab mice live 2 to 3 years and some even up to 4 years. So, in the least extreme case, a MGP-knockout mouse dying from aortic rupture at 2 months instead of living a relatively short normal life of only 2 years, would be equivalent for a human that would normally live to the age of 72 to die at the age of 6!

Here is what severe coronary calcification looks like in humans:

severe_coronary_calcification

Severe coronary calcification in a patient with end-stage renal disease. We can see that these blood vessels are basically filled with bone tissue that appears bright white. (https://www.bmj.com/content/362/bmj.k3887)

It was also observed that although the liver did produce and release MGP into the bloodstream, it had no effect on the arteries. Only the tissue-specific, locally-produced MGP within the vascular smooth muscle cells was able to inhibit calcification.

To check these conclusions, a similar study was done on normal mice that were given vitamin K1 to ensure proper liver function and healthy coagulation, and warfarin to block all extra-hepatic MGP action in tissues. The result? Stunted growth, pervasive arterial calcification, and premature death from stroke, heart attack, and aortic rupture.

The conclusions were solid: matrix Gla protein is the organism’s primary protection against soft tissue and arterial calcification; liver MGP has no protective effect on arteries, and only VSMCs-produced MGP can inhibit calcification in the arteries; both vitamin K deficiency and disruptions of the action of the enzymes that activate MGP cause extensive soft tissue calcification; and only vitamin K2, not vitamin K1, can inhibit warfarin-induced calcification.

Going further

When this was understood, more attention began to be paid to matrix Gla protein. Many other details were elucidated through further investigations. It was found that MGP is an 84-amino acid protein with five Gla residues. That all of these Gla residues are produced by gamma-carboxylation, which is mediated by the enzyme gamma-carboxylase that requires vitamin K2 as a cofactor, and that until now, the only known function of Gla residues is to bind calcium ions and crystals (calcium apatite). It was discovered that the concentration of calcium and phosphate in extracellular fluids is high enough to trigger and sustain growth of crystals, but that MGP and BGP prevent this from happening. That MGP is required by VSMCs to maintain their elastic and contractile nature. And not just that.

MGP actually inhibits the transformation of VSMCs into bone cells by antagonising the action of Bone Morphogenic Protein 2 (BMP2). It turns out that the muscle cells of the blood vessels have in them the potential to either stay smooth elastic contractile muscle cells, or turn into osteoblast-like bone building cells. BMP2 triggers that osteogenetic gene expression in the VSMCs: it tells muscle cells of the blood vessels to transform into bone-building cells.  And as if this wasn’t enough, BMP2 also induces apoptosis: it tells blood vessel muscle cells to commit suicide, which is certainly to help in the process given that once dead, they can be used as seeds for calcium crystal formation, and thus promote a faster and more efficient calcification.

What induces expression of BMP2 in cells? Probably several things that we haven’t yet identified. But for now we know that BMP2 is stimulated by oxidative stress, chronic inflammation, and high blood sugar levels. The good news is that MGP protects against all of these effects by antagonising BMP2. So if there is enough MGP and enough vitamin K2, if there are no disruptions to the action of the vitamin K dependent enzymes by anticoagulants like warfarin, and if oxidative stress, inflammation, and blood sugar are kept low, then there is protection against calcification of the arteries and other soft tissues like the liver, kidneys, and heart.

Recap

Here we have it. We have now understood the role of vitamin K dependent proteins in vascular calcification. And although it was a little long and maybe somewhat arduous, all the details are clear. It is complicated. I won’t deny that. But I have strived to make it all as accessible as I could without diluting the mechanisms of action and relationship between the different players. Let’s recap to make sure you are left with the essential elements in mind.

Vitamin K dependent proteins can either be vitamin K1 or vitamin K2 dependent. The dependence comes from the fact that vitamin K is required to activate the protein. This activation is the carboxylation in which a carbon dioxide is added to the glutamic acid residues along the protein. Carboxylation is mediated by carboxylase (GGC) that requires the reduced form of vitamin K in order to oxidise it and get the energy to push the carbon dioxide molecule onto the glutamic acid residue. Vitamin K is reduced by reductase (VKOR) which can do it over and over again in what is called the VKOR cycle.

Vitamin K1 dependent proteins are mostly liver based coagulation factors. Vitamin K2 dependent proteins are mostly outside the liver and generally involved in inhibiting soft tissue calcification. The most important calcification-inhibiting VKDP is matrix Gla (MGP), which performs a wide range of tasks to maintain elastic, flexible, calcium-free blood vessel walls.

Calcification is triggered by the death of vascular smooth muscle cells. These dead muscle cells act at seeds for calcium apatite crystals to form. VSMCs can be induced to become osteoblast bone-building like cells that then go on to stimulate the growth of bone tissue within the artery walls. This process is stimulated by bone morphogenic protein 2 (BMP2), which is expressed under conditions of oxidative stress, inflammation, and hyperglycaemia.

To prevent and reverse calcification the most important is to provide a good supply of vitamin K2 through diet and supplementation. Because it is essential in the activation of Gla proteins but only through its role in the VKOR cycle, the amount of K2 is the rate limiting factor. Hence more is better than less, and excess will simply remain unused but will not cause harm.

Naturally, matrix Gla protein needs to be available. Cells of tissues where calcification occurs (kidney, liver, heart, and blood vessels) secrete MGP. An interesting evolutionary self-protection adaptation mechanism. And here’s another: the amount of MGP that is produced by a cell depends on at least two factors that have been identified. One is the amount of calcium; the other is the amount of vitamin D3. In both cases, the more there is, the more MGP is produced.

So, vitamin D3 has the role of making calcium available but at the same time stimulates the production of MGP in order for the calcium to be available to the bones and not to the soft tissues. But for this, it relies on vitamin K2. This is why vitamin D3 without vitamin K2 leads to calcification: because MGP and BGP remain inactive and incapable of binding to the calcium ions to move them into bones and out of tissues. On the other hand, plenty of vitamin K2 would indeed activate the available MGP, but without enough vitamin D3 there might not be enough MGP to confer proper protection against calcification. This is a perfect example of the complementarity of action and function in essential micronutrients. There are certainly many more, but this one is particularly remarkable.

Final thoughts

I want to close on a final consideration. It is so easy and seems so natural for us to think in terms of this and that, good and bad, for and against, that our tendency is to look at everything in these terms. This is also true when we look at biochemical processes like the ones we have described and explored here. We naturally lean towards looking at the calcification inhibiting mechanisms as protective, and those that promote calcification and apoptosis as destructive.

But the reality is that cells, proteins, and enzymes don’t behave in these terms, they don’t think in these terms simply because they don’t think. They react biochemically to what they are exposed to, to the molecules and chemical messengers they encounter, to the quality of the liquids in which they bathe, to the characteristics of the environment in which they live, microsecond after microsecond, without any forethought or concern for the microsecond that will follow. The only guiding principle that can be used to lead us to understand why things happen the way they do is evolutionary adaptation to survive.

Having recognised this, we immediately see that the mechanisms that promote apoptosis of VSMCs, their subsequent transformation to osteoblast-like cells, and the growth of bone tissue within the artery walls that we refer to as arterial calcification, can only be a protection mechanism. A mechanism to protect the tissues and cells from the damaging effects of exposure to free radicals, inflammatory molecules, and glucose. Because, as we have seen, the process is reversible, it would be perfectly natural to undergo periods of calcification followed by periods during which the bone tissue is broken down and removed from our arteries and other soft tissues and organs when the circumstances allow it. Actually, we should say when the circumstances dictate it, because no matter what happens, it is always the circumstances—the environment—that dictate what is to happen.

What we can do, with the knowledge of what we have understood, is make choices about what we eat and drink, when and how much we eat, and how we live, sleep, and exercise. Choices that will shape or reshape, define or redefine the makeup of this internal environment of the body to always move us in the direction of optimal biochemistry, optimal physiology, optimal metabolism, and optimal health.

Everything that we explore together is always about just this. But sometimes the corrective action requires effort, sometimes even a lot of effort. In this case, however, it is as simple as can be, because it only requires us to supplement with vitamin K2 and possibly also D3. Of course, the last thing we want is a lifestyle that promotes the expression of BMP2 and the growth of bone tissue within our arteries. But supplementing with K2 and D3 together will in general bring only benefits. I know it was a very long-winded way to get to this, but now you understand why. That was—and is—the whole point of this blog, after all. I hope you enjoyed reading.

 

The information in this article comes primarily from the following papers: Molecular Mechanisms Mediating Vascular Calcification by Proudfoot and Shanahan (2006); Vitamin K-dependent Proteins, Warfarin, and Vascular Calcification by Danziger (2008); The Role of Vitamin K in Soft Tissue Calcification by Theuwissen, Smit, and Vermeer (2012).

Become a proud sponsor of healthfully! Join our patrons today!

Reversing calcification and the miracle of vitamin K2

Vitamin K2 is the only known substance that can stop and reverse soft tissue calcification.

If you didn’t stop at the end of that sentence to say Wow to yourself, you should keep reading.

Soft tissue calcification is one of the most serious health problems we face as individuals, as modern societies, and, on a global scale, as a species.  Cardiovascular disease—which leads to heart attacks and strokes, and accounts for nearly half of all deaths in industrialised countries—is a disease of soft tissue calcification: the calcification of our arteries.

Arthritis, of which basically everyone past the age of 40 suffers, and increasingly more with time and with age, is a disease of soft tissue calcification.  It is caused by the calcification of the cartilage in the joints:  the joints of the knees, but also of the shoulders; the joints of the hips, but also of the wrists; the joints of the elbows, but also of the feet and the toes; the cartilage between the vertebrae of the neck and the spine all the way down the back, but also of the hands and of the fingers.

Soft tissue calcification also causes kidney stones and kidney disease.  How many people above the age of 60 don’t have kidney problems?  Hardly any.  And how many young men and women in their 20s and 30s already have kidney stones and kidney dysfunction?  More and more every year.

Every one of the processes generally associated with ageing, from heart disease and stroke, to Alzheimer’s and dementia, to arthritis and kidney disease, to stiffness in the joints and muscles, but also to the wrinkling of the skin, is intimately linked to soft tissue calcification.

And now, let me repeat the sentence with which we opened:  Vitamin K2 is the only known substance that can stop and reverse soft tissue calcification.  It is really remarkable.

Maybe you didn’t know about calcification.  And so, maybe you are wondering why it is such a major and widespread problem, why it affects everyone no matter where we are or what we do.  It’s a good question.  But because we know that only vitamin K2 can prevent this from happening, we already have our answer:  soft tissue calcification is a major and widespread problem because our intake of vitamin K2 is inadequate to provide protection from calcification.

Naturally, the next question is why?  Why is our intake of vitamin K2 so inadequate?  If it is such a crucial essential nutrient, we would surely not be here as a species if intake had always been so inadequate.  Looking at things the other way around, if we are so dependent on adequate K2 intake for staying healthy, this must necessarily mean that we evolved having plenty of it in our food supply.  What’s so different now?

To answer this question with some level of detail—meaning with an explanation more extensive than just saying that it’s industrialisation that stripped our food supply of vitamin K2 as it has for all the essential nutrients to a greater or lesser extent—we have to understand what K2 is, how it’s made, and where it’s found in food.

The short answer is that K2 is found in the fat of pastured animals that graze on fresh green grass, and produced from vitamin K1 by certain kinds of bacteria in their gut.

The longer answer is that vitamin K2 is a family of compounds called menaquinones, ranging from MK-4 to MK-13 depending on their molecular structure.  These compounds are derived from the plant analog, the sister compound, vitamin K1, called phylloquinone, and found in chlorophyll-rich plant foods.  Phylloquinone is consumed by the pastured animal, it makes its way into their intestines, and there it is transformed by the bacteria of the animal’s intestinal flora.  The resulting menaquinone is then stored in the fat cells of the animal as well as in the fat of their milk if they are milk-producing.  Consuming these animal fats in which vitamin K2 has been concentrated will provide this precious essential micronutrient.

If the grazing animal does not feed on green grass, they get no vitamin K1.  If they get no vitamin K1, their gut flora is not only compromised and negatively altered with respect to what it should be if they were consuming the grass they have evolved eating, but it produces no vitamin K2.  If their gut flora produces no vitamin K2, their fat and milk will contain no vitamin K2, and neither their offspring nor any person consuming products derived from the animal will get any vitamin K2.  Hence, no grass feeding, no vitamin K2 in the animal’s fat.

international_dairy_week_banner

It is most natural that grass-eating animals should be grazing on fresh green grass in open pastures.  And yet, it is rather rare.  But without green grass, there is no vitamin K1.  And without vitamin K1 there can be no vitamin K2.

Maybe you’ve already thought ahead, and wondered since it is bacteria that produces vitamin K2 from vitamin K1 in the guts of grazing animals, can’t we make vitamin K2 without the need for grass-fed animals to do it for us?  Yes, it is possible.  Fermented vegetables and dairy products like cheese can also contain vitamin K2.  In fact, in the case of cheese, there is a lot more in the finished hard cheese than in the milk used to make it.  The amount varies widely because it depends on the kind of bacteria.  For dairy products, hard cheeses like Gouda have the most, and for plant foods, even if fermented veggies have a little, the Japanese fermented soybean snack natto is the ultimate source of K2.

As we all know, pastured meat and dairy is not easy to come by in our modern world.  It’s actually quite hard to find.  Our supermarkets and food stores are flooded with industrially produced meat and dairy from animals that have never seen a blade of grass—grass-grazing animals living their entire lives indoors, in stalls, fed and fattened exclusively on grains, corn, and soybeans.  This is how we have stripped our food supply of vitamin K2, and this is why is this a modern phenomenon—most of our grand-parents were still eating pastured meats and animal foods.

And if this wasn’t enough of a blow to vitamin K2 status, trans-fats, which are formed when vegetable oils are hydrogenated to be made saturated and stable (for long shelf life), and which most of us consume in great quantities, contain a K2 analog called DHP (dihydrophylloquinone) that displaces the little K2 that might has found its way into our diet.

It is for all these reasons that soft tissue calcification is so widespread.  And you have at this point what you need to know in order to first stop the process by which your soft tissues are getting increasingly calcified, and then, in time, to remove the accumulated calcium from these tissues.  It’s simple: healthy grass-fed animals produce yellow butter, yellow yolks, and yellowish fat;  you need to eat plenty of pastured animal foods, making sure you eat the fat in which vitamin K2 is concentrated, and, to be sure you have enough to reverse the already present calcification, take K2 supplements.  And this might be enough for you.

If it is, you can head to your browser to find and order some K2 supplements (I currently get mine, it’s a 500 mcg per tablet, from Phoenix Nutrition).  Also, we need to know that the two main forms of K2 are MK-4 (with four double bonds) and MK-7 (with seven).  The first is the one generally found in animal fats that haven’t been fermented, while the second is the product of bacterial fermentation.  Hence, meat and butter contain mostly MK-4, whereas natto, sauerkraut, and cheese contain mostly MK-7.

There is an important difference between these two forms of K2 in terms of their effects inside the body which has to do with their half-life, not in the sense of radioactivity, but in the sense of duration of biological activity in the body.  MK-4 will be in circulation at therapeutic doses for a number of hours, while MK-7 remains in circulation between 24 and 48 hours.  Therefore, to be safe, we need to eat grass fed meat and butter, and take MK-7 supplements (I take 1000 mcg), always after a meal with plenty of fat to maximize absorption.

If you are curious to find out more, if you want to know how menaquinone does this, how vitamin K2 does its miracles inside the body, then we need to take a closer look at the biochemistry of calcium metabolism.

There are three proteins found in bone matrix that undergo gamma-carboxylation via Vitamin K-dependent enzymes: matrix-gla-protein (MGP) (Price et al., 1983), osteocalcin (bone gla-protein, BGP) (Price et al., 1976), both of which are made by bone cells, and protein S (made primarily in the liver but also made by osteogenic cells) (Maillard et al., 1992) (Table V).  The presence of di-carboxylic glutamyl (gla) residues confers calcium-binding properties to these proteins.

MGP is found in many connective tissues and is highly expressed in cartilage.  It appears that the physiological role of MGP is to act as an inhibitor of mineral deposition.  MGP-deficient mice develop calcification in extraskeletal sites such as in the aorta (Luo et al., 1997).  Interestingly, the vascular calcification proceeds via transition of vascular smooth muscle cells into chondrocytes, which subsequently hypertrophy (El-Maadawy et al., 2003).  In humans, mutations in MGP have been also been associated with excessive cartilage calcification (Keutel syndrome, OMIM 245150).

Whereas MGP is broadly expressed, osteocalcin is somewhat bone specific, although messenger RNA (mRNA) has been found in platelets and megakaryocytes (Thiede et al., 1994).  Osteocalcin-deficient mice are reported to have increased bone mineral density compared with normal (Ducy et al., 1996).  In human bone, it is concentrated in osteocytes, and its release may be a signal in the bone-turnover cascade (Kasai et al., 1994).  Osteocalcin measurements in serum have proved valuable as a marker of bone turnover in metabolic disease states.  Interestingly, it has been recently suggested that osteocalcin also acts as a hormone that influences energy metabolism by regulating insulin secretion, beta-cell proliferation, and serum triglyceride (Lee et al., 2007).

These are the first three paragraphs of the chapter Noncollagenous Bone Matrix Proteins in Principles of Bone Biology (3rd ed.) which I found it on the web when I was searching for more info on the biochemical action of menaquinone.

And now, here is my simple explanation of how things work:

The players are the fat-soluble vitamins A, D, and K2;  three special proteins called osteocalcin, matrix gla protein, and protein S;  and an enzyme called vitamin K-dependent carboxylase.

First, vitamin D makes calcium available by allowing its absorption from the intestines into the bloodstream.  This is vital for life and health.  You know that severe vitamin D deficiency is extremely dangerous and develops into the disease that deforms bones called rickets.  Milder forms of vitamin D deficiency are much harder to detect without a blood test, but can and do lead to a huge spectrum of disorders and health problems.  However, without vitamin K2, ample or even just adequate levels of vitamin D will inevitably lead to increased soft tissue calcification.

Vitamins A and D make bone-building cells (osteoblasts) and teeth-building cells (odontoblasts) produce osteocalcin (also known as bone gla protein or BGP) and matrix gla protein (or MGP).  This is key because it is these proteins that will transport the calcium.

Vitamin K2, through the action of the vitamin K-dependent carboxylase enzyme, activates bone and matrix gla proteins by changing their molecular structure which then allows them to bind and transport calcium.

Once activated, bone gla protein brings calcium (and other minerals) into the bones;  and matrix gla protein takes calcium out of the soft tissues like smooth muscle cells of arteries, but also organs, cartilage, skeletal muscles, and skin.  Without this K2-dependent activation, BGP and MGP remain inactive, and the calcium accumulates in soft tissues all over the body.

What completes the act, is that vitamin K2 activates protein S which oversees and helps the immune system clear out the stuff of arterial plaques that remains once the calcium making the plaques structurally stable has been taken out.  And, amazingly, protein S does this without triggering a large inflammatory response.

Even though it is quite straight forward when explained in this way, this understanding of vitamin K2 and its action in the body is really quite recent: in the last 20 years or so.  For one thing, it was only 10 years ago that Chris Masterjohn solved the 60-year old mystery of Weston A. Price’s X-Factor, correctly identifying it for the first time as vitamin K2. (You can read that for yourself here.)  And although some laboratory studies and experiments on vitamin K were done several decades ago, the majority are from the last 10 years (take a look at the references in Masterjohn’s paper.)

We’ll stop here for now.  But we’ll come back to vitamin K2 because there are so many other amazing things it does for our health.

This article was inspired by Dr. Kate Rheaume-Bleue’s book entitled Vitamin K2 and the Calcium Paradox.

Join our patrons today!

A simple 10-step arthritis treatment plan

What are the most important things we can do to stop and reverse the degeneration, and alleviate the stiffness and pain of arthritis? You can be sure that no matter how bad things are, there are many things that will help, and they don’t involve pharmaceuticals.

We looked in some detail at how to treat arthritis in Treating Arthritis I and II, and have at least one of our readers, an artist, Catherine Bath, who has been able to alleviate a great deal of her stiffness and pain, and recover a good amount of mobility and ease of movement by following the various recommendations we made there and throughout this blog.

Here, prompted by a request from a good friend who needs it, we present a simple treatment plan with the most important elements, and just the essential details needed to understand why the interventions are useful, and how to put them into practice right away.

what-arthritis-pain-feels-like-722x406

Illustration of painful, inflamed, arthritic joints. (Image taken from Everyday Health)

1. Hydrate and alkalise

This is the most important point of all. Without it nothing will work, really. Every joint works thanks to the cartilage that allows the bones to move within it without rubbing against one another. Arthritis is always characterised by the degradation of this cartilage and the pain associated with the inflammation caused by the bones not moving properly or rubbing inside the joints. Cartilage is water (85% by weight) held together in a matrix made mostly of collagen, and chronic dehydration is the first cause of cartilage breakdown (details in Your Body’s Many Cries for Water).

Metabolic acids (mostly uric acid) can only be excreted efficiently by the kidneys when there is an excess of both water in which to dilute the acid, and salt to help carry it out in the urine. Without excess water, the kidneys will prioritise retaining as much of it as they can. Without excess salt, the uric acid will be recycled instead of being excreted in order to to maintain the concentration gradient in the medulla of the kidney that ensures its ability to reabsorb as much water as possible. Chronic dehydration and avoidance of salt, coupled with the drinking of acidic liquids and eating of acid-forming foods inevitably leads to chronic acidosis.

To maintain the pH of the blood at 7.365 in spite of the continuous flow of acids into it from the muscles and digestive system, two main coping strategies are available: 1) The body’s main acid buffering mechanism using the reserves of alkalising minerals stored in the bones and teeth to counterbalance the acid load. If you don’t quite understand the implication here, this means erosion of the bones and teeth to put into the blood some of the alkalising calcium, phosphate and magnesium as acid-buffering minerals. 2) The crystallisation of the uric acid to pull it out of circulation, but then storing it into tissues, of which the joints, regrettably for arthritis sufferers, seem to be used preferentially, even though all tissues can be used for this to a certain extent.

The strategy is simple: drink alkaline water (either naturally so, or made to be with pH drops) on an empty stomach, and allow at least 30 minutes before eating. Aim for 3 litres per day. One litre before each meal, drank over a period of one to two hours, is a simple rule of thumb and easy schedule to remember. And aim for 2 full teaspoons of unrefined salt with your meals.

2. Magnesium chloride and sodium bicarbonate baths

Magnesium is at the very top of the list of supplements for anyone in any circumstance. We explored and explained why in Why you should start taking magnesium today.

Transdermal magnesium and bicarbonate therapy is the best way to simultaneously replenish magnesium stores in the cells, while alkalising the tissues directly by transdermal absorption of magnesium and sodium bicarbonate. If you have a bath tub, do this once or twice per week, or more if you can or need it. Add two cups of each magnesium chloride and baking soda, and soak for 45 to 60 minutes.

I also recommend that in addition to this—but crucially if you don’t have a bath—you take magnesium supplements. I take a fat-bound magnesium supplement called L-Threonate. Another alternative is the amino acid-bound supplement called magnesium glycinate (using glycine). Both of these form maximise absorption. Take it with meals.

3. Silicic acid, collagen, hyaluronic acid, and proteolytic enzymes

An essential constituent of hair, skin, and cartilage. Absorption is poor and slow. This means you need to take small amounts every day for long periods of time. Every morning, first thing, with your first glass of water. You will need to do this in cycles of three months on, three month off. I take Silicea, a concentrated water-soluble silicic acid gel by the German brand Huebner.

Collagen and hyaluronic acid will help greatly in rebuilding the damaged cartilage. Look for type II collagen for better absorption. Now Foods has good products at good prices. Also, glucosamine, chondroitin, MSM have all been shown to be useful for joints.

Proteolytic enzymes are responsible for breaking down, building, and repairing tissues. They can be amazing in accelerating a healing process, no matter what it is. Therefore, this is an essential supplement to take in treating arthritis.

4. Vitamin D3 and K2

These are the two vitamins that control and regulate the availability and deposition of calcium. Vitamin D3 makes it available, and vitamin K2 directs it to the bones and teeth.  Lots of vitamin D3 without K2 will lead to calcification with calcium being deposited all over the place in the arteries and soft tissues. Lots of K2 without D3 will lead to a depletion of available calcium in the bloodstream because it will be stored away in the bones and teeth. K2 is also used to decalcify soft tissues by pulling out and redirecting the deposited calcium from the tissues to the bones.

Vitamin D deficiency is universal in the west, and so is vitamin K2 deficiency. Arthritis sufferers need large doses of both for extended periods of time (at least a year). I recommend taking a combo supplement containing both in an optimal ratio, and take as many capsules as needed to bring vitamin D intake to 20 000 – 50 000 IU per day with breakfast and lunch. For years I took DaVinci’s ADK combo, which I think is one of the best. Now I take Life Extension’s D and K combo, without vitamin A, because its presence dampens the activity of vitamin D3. However, vitamin A promotes the healing of tissues. You can take both, alternating between the two.

Another of our readers who had his entire adult life an arthritic wrist that caused him pain and trouble whenever he used his hand for anything at all, followed my suggestion of taking 50 000 IU of vitamin D3 per day, together with the appropriate amount of vitamin K2 to match in the D3 intake, for six months. Within the first month, he found incredible improvement, something he had never been able to achieve using all the methods and drugs that had been proposed to him by MDs. After three months, his wrist was completely healed. He continued for the entire 6 months just to be sure, and now, his painful, debilitating, arthritic wrist that he was living with for more than 20 years, is a thing of past, a bad memory.

5. Vitamin C

Whole food vitamin C is essential for healing and keeping tissues and cells healthy. And there is definitely a difference between whole food C and ascorbic acid. We discussed this in Vitamin C is not vitamin C. This is not specific to arthritis, but everyone with arthritis should be loading up on it. I take The Synergy Company’s Pure Radiance C. You should take at least three capsules, but better 6 capsules per day, split evenly with each meal.

6. Turmeric extract

Turmeric is one of if not the most powerful natural anti-inflammatory. And inflammation is a hallmark of arthritis. You should take an extract that concentrates the curcuminoids, but you should also think of making yourself hot turmeric drinks, adding as much turmeric to your soups and curries as the flavours and combinations of foods will allow. It always needs to be taken with a lot of fat to maximise assimilation.

7. Food

Naturally, you will have guessed that my recommendations for food are the same as always, but even more important in this case when we are trying to bring inflammation as low as possible, and maximise healing:

  • no simple or starchy carbs because they cause inflammation, tissue damage, and metabolic disorder, except for berries once in a while;
  • unlimited unprocessed saturated fats from coconut oil, butter, and animal sources;
  • enough high quality protein from healthy animals including organ meats, especially liver; and
  • as many green veggies as you like, especially leafy like spinach, kale and lettuces, watery like cucumbers, fibrous like celery and broccoli.
  • Avocados are fantastic to eat as often as you want. Walnuts and hazelnuts are excellent health-promoting nuts (either roasted, or raw and soaked, subsequently dehydrated or not).

8. Sunshine, fresh Air, exercise and sauna

Go out in the sun, go for long hike, expose your skin, breath deeply, run up the hills, work your muscles at the gym if you can, go to Pilates and yoga classes, do lots of stretching whenever you can, and go to the sauna when you can. Make sure you stay 15 minutes to get really hot and for the heat to penetrate into the tissues and joints.

9. Iodine

Iodine is the universal medicine. Everyone needs it, and everyone should be supplementing with it. You can read for yourself why in Orthoiodosupplementation. Start at 12.5 mg and work your way up to 50 mg per day. Increment by 12.5 mg each week. Take the supplements on weekdays and give the kidneys a break on weekends. I take Iodoral, and recommend that. Using the generic Lugol’s solution is as good but less convenient.

10. Melatonin and good sleep

Good sleep is absolutely essential for repair and healing. Make sure you get plenty every day. Melatonin has, in addition to its effects in helping you sleep, many other amazingly health-promoting effects that we will explore in another article sometime soon, I hope.

Last words

Are there more supplements you can take? Of course there are. I personally take all of the above and several others. I wanted to stick to the things which I believe most essential. If I were to recommend additional supplements, I would say to take

  • omega-3’s, which are useful for lowering inflammation, as well as tissue healing and repair. I take Life Extension’s Mega EPA/DHA. Don’t take more than the recommended dose. Omega-3’s are very easily oxidised, and should always be taken in very small quantities.
  • Niacin in the form of niacinamide is also a universally useful supplement because it provides molecular building blocks needed by every single cell to produce energy. I take 500-1000 mg/day, but you could take 3000 mg (1000 mg with each meal). Niacin supplements will also do wonders for your mood (see No more bipolar disorder?).
  • Ubiquinol, the active form of Co-enzyme Q10, is also essential in cellular energy. I would recommend at least 50 mg per day, but more (like 100 or even 200 mg) would probably be better.
  • Vitamin B12 is crucially important for health. And the older we get, the more critical it becomes. I get an injection of 5 mg every month, and recommend that for everyone (see B12: your life depends on it).

Keep in mind that the timescale for improvements is long: on the scale of months. If you think that is too slow, ask yourself how old you are, and how long it took to get to the state you’re in. Now, with the answers in mind, remind yourself to be patient. You need to be determined to get better, consistent with your new regimen, and patient. But I assure you that you will get better. And please, keep me posted on your progress.

If you think this article could be useful to others, please Like and Share it.

You have cancer, and there’s lots you can do

Everybody knows that cancer rates are rising everywhere and every year. Everybody also knows that the words, “You have cancer. I am sorry.”, fall upon us like a death sentence. Everybody knows this, because we see it all around us, everywhere we look, and we hear about it every day, everywhere we turn.

If a doctor has, indeed, said these words to us, then we are probably scared, probably very scared. We know that basically everyone we have ever heard of who were diagnosed with cancer, died. Sometimes they died really quickly, like, within a few weeks. Sometimes they died within a few months. Sometimes it wasn’t so quick. Maybe it took a year of two, or three, or even five. They went through rounds of chemo. They were on sick leave at home for months on end. They sometimes appeared to recover at some point, maybe a bit, for a little while, but in the end, they died. And they died of cancer.

We also know that not even the most famous and richest people, like Steve Jobs, for example, can escape this kiss of death that the diagnosis of cancer delivers. Wealth and power are irrelevant when it comes to our prognosis as cancer patients: it is always bad. Of course, how bad it is depends on the kind of cancer, but why is it that so many different people, in so many different places, die of cancer every day?

I won’t venture into formulating an answer to this question, and I won’t dwell on cancer survival statistics. I don’t think it’s useful for us right now. I want to hurry and move to the good news. And the good news is that there many things you can do to help your body rid itself of cancer, which is usually the result of a long-standing disease process that has evolved over a lifetime, and has finally manifested itself in this way. This presentation of the question at hand is definitely not exhaustive, nor attempting to be. But this is what I consider to be some of the essential elements.

whitebloodcellsattackingcancercells

White blood cells (shown in blue) attacking cancer cells (shown in red).

 

Understanding cancer

To understand cancer, we have to understand the origin of cancer cells. Cells become cancerous due to a defect in energy production, a mitochondrial dysfunction, an inability to manufacture enough ATP (adenosine triphosphate) through oxidation of glucose or fatty acids to sustain the cell’s functions. This forces the cell to fall back on anaerobic (without oxygen) fermentation of glucose to supplement the deficient energy production from the dysfunctional or reduced number of mitochondria. Fermentation produces an increase in lactic acid in and around the cell. This decreases the availability of oxygen to the mitochondria, which further impedes their ability to produce ATP through oxidation of nutrients, and creates a negative feedback loop that pushes towards further mitochondrial stress and dysfunction, less oxidation, more fermentation, more acid, and less available oxygen.

Because energy production through fermentation is so very inefficient, the cell needs far more glucose, and naturally develops more insulin receptors in order to be ever more sensitive to, and able to capture circulating glucose more effectively. Cancer cells often have 10 times more insulin receptors than healthy cells. What should be clear is that it doesn’t matter where the cancer is, and it doesn’t matter how it evolved, whether it was due to a gradual evolution from an environment too high in glucose, lacking in oxygen, and saturated with acid, or whether it was due to exposure to a toxin or mitochondrial poison, of which there are many and increasingly more in our environment. In the final analysis, this is how cancer cells become how they are, and this is how they survive.

As to their multiplication and proliferation from a single or small group of microscopic cells to large macroscopic tumours in one spot or all over the place, this can be understood by considering that the cell that is devolving from its normal function to that of cell whose only function is to ferment glucose at the fastest possible rate, loses, little by little, the ability to do whatever it was doing before, by losing the ability to produce ATP that can be used by its different specialised parts and constituents to perform their specialised functions, the cell becomes less and less specialised, less and less differentiated and therefore more and more general and more and more primitive, to the point where the essential ability of the cell to destroy itself, when something in its workings has gone wrong, is lost. Having lost this safeguard, the primitive, the undifferentiated, but also necessarily abnormal and weakened cell, just ferments and multiplies, limited only by its ability to fuel itself and sustain this most basic activity of survival without other purpose but this survival in and of itself.

Removing cancer

Having recognised and understood this, the strategy by which we can help the body rid itself of the cancer cells, and regain its healthy physiological functions becomes clear. We have to 1) do all we can to cut off the source of fuel to the cancer cells, 2) clear out the accumulated acids and transform the acidic environment into one that is alkaline and oxygen-rich, 3) help restore the cells’ mechanism of apoptosis—their ability to self-destruct, and 4) do everything else we can to further weaken and destroy cancer cells by means that simultaneously strengthen healthy cells. It’s a simple strategy that is also simple to put into practice, as we will see in a moment.

1) Starve the cancer cells

The first point is to cut off the fuel to the cancer cells. The source of fuel is glucose, because cancer cells can only ferment and cannot oxidise, and the way the glucose is supplied to the cell is by the action of insulin that moves it across the cell membrane. Therefore, what has to be done to is minimise the availability of glucose, and, more important still, minimise the availability of insulin to shuttle the glucose into the cells. The lower the glucose, the less potential fuel there will be. The lower the insulin, the less glucose will actually be able to enter cells. There is no real lower limit. Without ingesting any carbohydrates, the body maintains and regulates blood sugar according to the stress levels and kinds of activities we engage in, independently of how low insulin levels are. And so, the focus should be to have the lowest possible insulin levels naturally.

The fastest way to lower blood sugar, but especially insulin, is to fast, to stop eating altogether, and just drink water and herbal tea, remembering to eat enough salt to match the water intake. The second best way of doing this is in form very similar, but turns out to be much easier to do, is also a kind of water fasting, but with the addition of fat from coconut oil and butter, melted in the herbal teas. Both of these forms of fasting will most effectively deprive the body of anything that can easily be made into glucose, and of anything that will stimulate the secretion of insulin, thereby will allow glucose to drop as low as possible, but more importantly, insulin to drop and stay at an absolute minimum, and therefore most effectively starving cancer cells, no matter where they are in the body and bodily fluids, in the tissues and organs. The first form of the classic water fast is harder, but many people do it without hesitation nor difficulty. The second form is much easier, and may even be more effective in inducing a deep state of ketosis given the additional intake of medium chain fatty acids.

We can easily imagine doing such a fat “fast” for days, or even weeks, depending on the severity of the situation, our resolve to suffocate and starve the cancer cells as quickly as possible, and, of course, the state and circumstances in which we find ourselves. In addition, we can do this as much as possible on any given day, independently of what else we eat. The more fat and the less carbohydrate we ingest, the lower the insulin and the more effective the anti-cancer healing protocol will be.

The third option is to eat and drink to keep insulin levels as low as possible. Here again, because fat is the macronutrient that stimulates the least secretion of insulin, truly minimal, it should be the main source of calories. Simple carbohydrates and starches are most insulinogenic, and protein is about half as insulinogenic as are carbs. Indigestible fibre does not stimulate insulin. Therefore, in the extreme, we would eat only fat, pure fat. The best ones being the most natural and least processed, most saturated and least unsaturated: coconut fat, butter, animal fat and, the best of the vegetable oils, cold pressed olive oil.

It’s important to understand the difference between having low blood sugar, and having low insulin levels. The first is like the amount of food in the kitchens of the restaurant, the second is like the waiter bringing it to the table. It is far, far more important in our efforts to stop the supply to cancer cells that we keep insulin levels as low as possible, than it is to try to keep glucose levels low. And to push the point further, it doesn’t really matter what the amount of glucose actually is, because as long as insulin is low, it will not be brought into the cell, into the cancer cells. The reason I emphasise this is because lack of sleep, emotional or psychological stress, intense physical exercise will all raise blood sugar levels temporarily, in some instances, to high levels. But as long as insulin is as low as it can be, the sugar will not be readily transported into the cells.

Naturally, we cannot have zero insulin, because we would die: our cells would literally starve to death, no matter how much we ate. Babies with a genetic defect that makes their pancreas not able to produce insulin always died of emancipation before the discovery and subsequent commercialisation of insulin as medicine. Similarly, if at any point in a child’s or adult person’s life, insulin stops being produced, incredible weakness and emancipation will follow, before it is tested and identified as the cause of their problem, hopefully in time before permanent damage ensues. Therefore, there is always some insulin in circulation, and therefore, sugar will eventually make its way into at least some cancer cells. This is why it is important to keep it as low as we possibly can naturally, and this is how we can appreciate the essential difference between the effects of high glucose and high insulin.

In a less extreme form than the fat-fast, we maintain low sugar and low insulin by getting and deriving most of our energy from fat. Eating cucumber or celery with almond butter or tahini, for example, or a green leafy salad with lots of olive oil, walnuts, and avocado, provides basically all calories from the fat, given that cucumber, celery and lettuce greens, are basically just water and indigestible fibre, while almond butter and tahini are 80\% fat by calories, and walnuts are 84\%. So is coconut milk, for example, at nearly 90\%, and dark 85\% chocolate, at 84\% fat based on calories. Focusing on feeding the body with these kinds of healthful, high-fat foods, will nourish, stimulate healing, and keep insulin and glucose levels as low as we can without either water fasting, or consuming only fat.

2) Alkalise to remove and excrete accumulated acids

The second point is just as important as the first, because it is the environment in which the cells live that actually has the most direct effect on their function. We have looked at the importance of achieving and maintaining an alkaline environment in the body in several other places. The essence is excellent hydration with alkaline water (pH>8) combined with the intake of proportional amounts of unrefined salt to promote the release of acids from the tissues, and its excretion through the urine by the kidneys. Without proper hydration, the cells will retain the acid with the little water they have to hold on to. Without proper amounts of salt, the kidneys will also retain the acid in order to maintain the concentration gradient that allows the nephron to function when it re-absorbs water.

Naturally, alkaline water will work infinitely more effectively. But the most important detail is the controlled balance between water and salt intake, and what we want is a lot of water and a lot of salt. We cannot take in large amounts of salt water without getting loose stools. So, it has to be smoothly distributed throughout the day, except in the morning, when we get up, because we are dehydrated, and need to drink about 1 litre of water over the course of one to two hours, before we start taking salt.

If you buy mineral or spring water, find the one that has the highest pH value. It should be greater than at least 8. If you have a water filter at home, then add alkalising drops to it before drinking it. I use Dr. Young’s PuripHy drops.

As acidity decreases, and the environment becomes more alkaline, oxygen will flow more freely, and become more available to mitochondria for oxidising fatty acids in producing energy. Remember that cancer cells do not use oxygen, and cannot use fatty acids to fuel themselves, whereas normal, healthy cells, not only can, but function much more efficiently on fat rather than glucose as their primary fuel. Adding chlorophyll and fresh juice of green vegetables to the alkaline water is an excellent way to further boost alkalisation, neutralisation, and elimination of accumulated metabolic acids. Unlike the first step, which is to lower insulin and glucose levels, and that can be done, to a great extent, literally overnight under fasting conditions, alkalising to eliminate accumulated acids is something that takes time. But in both cases, what matters most is consistency. Hour by hour, and day after day, the body will do what it needs to do as best is can, and improve in these functions with time.

Beyond this fundamental necessity to hydrate with alkaline water throughout the day, and day after day, the most therapeutic way to alkalise the tissues, and detoxify the body, is by taking medicinal baths in which we add two cups of sodium bicarbonate (baking soda), and two cups of magnesium chloride (nigari), or magnesium sulphate (epsom salts), if nigari is not available. This is easy, relaxing, extremely medicinal, and very effective in neutralising and eliminating acids and toxins from the body. In fighting cancer, you should be soaking in this kind of hot bath for 45-60 minutes three times per week. The benefits of this ultra simple trans-dermal therapy with sodium bicarbonate and magnesium are incredible. You can read a lot more about this from the baking soda, magnesium and iodine doctor, Dr Sircus.

3) Restore cellular self-destruct function

The third line of action is also essential, and it only requires you to take a few key supplements. The most important of these in the fight agains cancer is iodine, because of its fundamental role both in the structure and architecture of cells, but also in the regulation of apoptosis, the process by which a damaged cell will self-destruct when things have gone wrong somewhere. The importance of iodine cannot be overemphasised. And in healing cancer, or any serious disease condition, we will want to take high doses daily. Doses of at least 50 mg, but preferably 100 mg.

However, because of its very strong detoxification effects, as it pushes out all accumulated toxic halogens out of the cells to replace these by iodine in its proper place, we must work up to these high doses gradually, starting with 12.5 mg, and increasing the dosage as quickly as possible given the body’s response to it. Some people , maybe most, will experience headaches and possible nausea when starting on iodine. This is perfectly normal. The stronger the reaction, the more indicative of the body’s level of toxicity. Therefore, you should always view this as something good, in that toxins are being excreted out of your cells. It is important to support the detoxification process by taking chlorella and spirulina, probiotics and psyllium husks every day as well, while always drinking a lot of alkaline water with added chlorophyll for extra cleansing, if possible.

What I take and consider to be the best supplement is Iodoral by Optimox. Optimox recommends taking the iodine on an empty stomach for faster absorption, but it can also be taken with food for slower and possibly better assimilation. In addition, although iodine can easily be taken on an empty stomach, the co-factors, which include B vitamins, are much better taken with food to avoid potential nausea or queasiness. Moreover, taking it with food will slow down the absorption, and thereby decrease the negative sensations from the detoxification effects. The only thing is that iodine, given its stimulation of thyroid function, will energise the body. Therefore, it should be taken before midday. I take it either first thing in the morning or at lunch (or both).

You can read about the importance and functions of iodine in the following three books: Iodine, Why You Need It, Why You Can’t Live Without It by Dr. Brownstein; What Doctors Fail to Tell You About Iodine and Your Thyroid by Dr. Thompson; and The iodine crisis: what you don’t know about iodine can wreck your life by L. Farrow. There are also many web resources and highly informative forums about iodine and cancer. You can search for the words iodine and cancer to see for yourself.

Other fundamentally important micronutrients are vitamins B12 and D, both of which are needed for proper cellular function, and DNA transcription and replication, because of their roles in the nucleus of cells, activating and de-activating, switching on and off genes, to ensure everything in the cell works as it should. For best and fastest results—and that’s definitely what we need in our fighting cancer—B12 should be injected weekly in the amount of 1 mg, and in the form of methylcobalamin. (For optimal health in normal circumstances, it can be injected once a month in the amount of 5 mg.) Vitamin D should be taken with its sister vitamins, A and K2, for synergistic effects and biochemical balance in their functions. Each of these have complimentary roles, and should generally be taken together, unless there is a reason not to. You can read these two articles published by Chris Masterjohn from the Weston A. Price Foundation to learn why and how: On the trail of the elusive X-factor: a sixty two year old mystery finally solved, and Update on vitamins A and D.

It is by supporting proper cellular function, especially in the nucleus, with iodine, B12 and D, that cells will regain, little by little, the ability to recognise that they are damaged and need to self-destruct. There will always be millions or even billions of cells involved in the disease process we call cancer, but they will be distributed along a wide spectrum of dysfunction, from having very mildly impaired mitochondrial function from a light oxygen deficit cause by a little too much acid in the environment surrounding the cell, to full cancer cells that derive 100% of their energy needs from anaerobic fermentation without using any oxygen at all, and thriving in extremely acidic conditions.

Hence, many cells will die from being starved of glucose, because that’s the only fuel they can use; many cells will recover enough of their normal regulatory mechanisms to know its time to self-destruct; and many cells will actually regain their healthy function, repair their damaged parts, and replace their dysfunctional mitochondria with new ones. Nothing is ever black and white when it comes to cells and cellular function. Instead, everything is grey. But it is a million different shades of grey.

4) Do everything else that can help

The fact is that there are many, many more things you can do. Many therapies, many treatments, many supplements and herbal formulas, that have all proved highly effective against cancer. There are so many that many books have been written about them: About Raymond Rife, you can read The Cancer Cure That Worked by Barry Lynes; about Gaston Naessens, you can read The Persecution and Trial of Gaston Naessens: The True Story of the Efforts to Suppress an Alternative Treatment for Cancer, AIDS, and Other Immunologically Based Diseases by Christopher Bird; about Rene Caisse and the Essiac tonic, you can read Essiac: The Secrets of Rene Caisse’s Herbal Pharmacy; about Johanna Budwig, you can read Cancer – The Problem and the Solution; and the list goes on. There are websites devoted to these people and their approach to cancer, and this is just a few of them that I know about. One book that compiles a lot, maybe most, of the information on non-toxic treatments for cancer, is Ty Bollinger’s Cancer: Step Outside the Box.

Maybe you find it hard to believe that our governmental and medical authorities would have gone—and continue to this day—to go through such extreme measures in order to suppress treatments that work so effectively to help and heal people of their illnesses and of cancer, without negative side effects, and at very low costs. But this is a simple fact. And it is quite easy to understand if we consider that anyone, or any institution, that has commercial investments and interests in a particular endeavour, will go to great lengths to maintain and strengthen, as much as they can and for as long as they can, the conditions that make them successful. There’s nothing more to it than that. Let’s look at a few of those therapies and supplements which are easy to implement, and highly effective against cancer: hyperthermia, flax seed oil, enzymes, and turmeric.

Hyperthermia, or heat therapy, is a very well studied and effective therapy against cancer, both preventatively and curatively. The idea or principle is very simple: healthy cells can withstand high temperatures without damage. The reason why this is so, and why we know it for sure, is that the body produces fevers as a defence mechanism to destroy invading viruses and bacteria that, unlike our own cells, cannot withstand the heat. Similarly, cancer, and other compromised and damaged cells, are unable to cope with high heat. Hence, it was hypothesised, tested, verified and demonstrated that hyperthermia is really very effective at destroying cancer, while simultaneously cleansing and strengthening healthy cells and tissues. Infrared saunas are ideal in heating the tissues more deeply, but any sauna, steam room, or even bath that induces hyperthermia by raising the temperature in the body, will help kill cancer cells, cleanse, and restore health.

Enzyme therapy has also been used for many decades in the treatment of cancer patients extremely successfully. The late Nicolas Gonzalez who passed away last year, was its most recent champion, following in the footsteps of his mentor, Dr William Kelley. The treatment protocols are more complicated, and are always highly individualised, but the main element is the supplementation with large doses of enzymes, combined with the colon cleansing to eliminate the dead tumour tissues from the body. Large quantities of fresh vegetable juice are also often included in his recommendations. You can read about it here: http://www.dr-gonzalez.com/index.htm, but whether you decide to throw yourself completely into it or not, I strongly recommend taking proteolytic enzymes three times per day, always on an empty stomach at least 30 minutes before eating, and support cleansing by taking a colon cleanser before going to bed. This site, http://www.losethebackpain.com, has good quality enzymes and cleansing supplements that we’ve used, but you can also do your own research.

Flax seed oil, organic and cold pressed, combined with fresh organic quark or cottage cheese is, based on Johanna Budwig’s extensive, lifelong research, as well as practical clinical experience with patients, is another one of the most effective and simple cancer treatments. And although the biochemistry of it, and biochemical pathways through which the cancer is weakened and destroyed may be complicated, the implementation is very easy and simple, costs very little, and cannot in any way bring about harm, unless one is severely allergic to milk proteins (in which case the dairy can be replaced with another source of protein that will work as the carrier). Here is a good article that has links to other excellent articles about this: https://www.cancertutor.com/make_budwig/

Turmeric, an ancient, bright yellow, Indian spice, which is a powder made from drying the ginger-like root that is turmeric, is one of the most researched natural substances in modern times, and is surely one of the most powerful natural anti-cancer supplements. Since it has tons of wide-ranging health benefits, and carries no risks at all, it’s clear that everyone can benefit from it. You can read about it from Mercola here. You should take it three times per day, but with your meals, because the more fat there is in the gut, the better the absorption will be, as is true for most antioxidants, vitamins, and minerals.

I feel it is important to emphasise the point just made about the risk-free nature of supplementing with turmeric, because it is a crucial point that applies to everything we have discussed here, and everything we have discussed in all the natural healing protocols and nutritional approaches we have presented in the past. Food-based nutritional healing is, in general, risk-free, because it doesn’t involve ingestion of or exposure to toxic substances, and instead involves correcting deficiencies, boosting nutritional status, and optimising the biochemical and hormonal environment of the body in order to promote healing.

Of course, we can object by referring to examples of people dying from drinking too much water too quickly. But we are not talking about such extremes. Nonetheless, we could, for example, eat coconut oil or butter all day, and other than the possible nausea from taking in so much fat, you wouldn’t get anything more than loose stools. Moreover, the body’s own hormonal responses would naturally prevent overconsumption through a feeling of extreme satiety that would basically make it impossible to willingly eat more.

Another example is that of using baking soda or iodine. So simple, and yet so powerful, they stand as the perfect examples of the benign nature but extreme effectiveness of natural healing. We find written in the most recent edition of the Manual for the Medical Management of Radiological Casualties of the US Military Medical Operations, Armed Forces Radiobiology Research Institute, that sodium bicarbonate will “prevent deposition of uranium carbonate complexes in the renal tubules”, and that we should, “within 4 hours of exposure, administer potassium iodide (KI) to block uptake of radioactive iodine by the thyroid”, because they are the best known ways to protect the kidneys and thyroid from being destroyed by the radioactive elements that would—without the use of sodium bicarbonate and potassium iodide—migrate to these organs and destroy them.

But why wait for a chemical spill or a nuclear power station meltdown in order to rid the body of accumulated chemicals and toxins, and to replenish every cell with a plentiful supply of iodine to ensure that all cells and all glands function at their best, now and every day? We don’t have to wait. The same goes for turmeric, for enzymes, for B12, for A-D-K2, for hydration, for alkalisation, for minimal glucose and minimal insulin loads, for maximum nutrition and maximum health. Why don’t we start doing this preventatively right now?

Summary and Wrap up

Maybe you know all of this stuff already, or maybe you don’t and you are blown away and overwhelmed by the amount of information and range of topics we have covered. Maybe you are reading this because you are interested and curious to learn and be as well-informed as you can about health topics, or maybe you are desperately looking for relevant information that can help you or a loved one. No matter in which camp you find yourself, here is the summary and wrap up I can offer to bring all of what we have discussed down to a simple set of recommendations that anyone faced with a diagnosis of cancer, and fearful of, or skeptical about, or doubtful that the current standard of care in the cancer industry will help them, can understand and follow, knowing that none of these food choices, supplements, and therapies will bring them harm in any way, and that all will only do good, regardless how dire or hopeless their situation may appear to be.

  • Keep low insulin levels, as low as possible, by not having insulin-stimulating carbohydrates, and by keeping protein intake reasonably low. Focus on consuming natural, unprocessed fats as much as possible to supply the largest proportion of your daily calories. Consider a water or a tea-with-fat fast for a few days when it is suitable, or even as an intermittent fasting strategy on a daily basis. Consider also doing a green juice “fast” (only green vegetables) with added fat from blending in melted coconut oil or milk.
  • Drink alkaline water, always on an empty stomach, considering the day as divided between hydration periods, and feeding and digestion periods. The first hydration period is from the time you get up until you have your first meal. It is good to extend that period if you can to allow plenty of time for proper hydration after a long night of dehydration, with at least 1 to 1.5 litres over a period of at least 2 hours. Drink slowly to improve absorption and not pee everything out. Always allow 30 minutes without drinking before meals, and 2-3 hours after meals, depending on their size. The cycles of hydration and feeding during the day (for 3 meals) should be as follows: drink, wait, eat, wait, drink, wait, eat, wait, drink, wait, eat. For only two meals, which I recommend, then periods of drinking are extended and allow for even better hydration, cleaning of the blood, and better digestion.
  • Take iodine supplements with the co-factors and with food to maximise absorption and effectiveness. Start with 12.5 mg per day, and work your way up to 100 mg. Do this as quickly as your body allows you to. Take the iodine every weekday, and stop on weekends; five days on, two days off. (My wife and I take 50 mg per day.)
  • Take hot baths with sodium bicarbonate and magnesium chloride (or sulphate; 2 cups of each). Soak for 40 to 60 minutes. Do this three times per week. Always take your baths on an empty stomach, and drink at least one litre of alkaline water during the length of the bath. (Once per week is what I aim for as preventative medicine.)
  • Get B12 injections of methylcobalamin, 1 mg on a weekly basis. (My wife and I get a 5 mg injection once per month.)
  • Take proteolytic enzymes and Essiac tonic three times per day, always on an empty stomach, always at least 30 minutes before meals. (We take it once, first thing in the morning.)
  • Take turmeric and turmeric extract, as well as A-D-K2 with every meal or fatty snack, three times per day during recovery. (Once daily in normal circumstances.)
  • Take infrared or regular saunas, every day if possible, or even in the morning and at night if you have or decide to buy your own little sauna. I would definitely do this given how effective hyperthermia is at destroying cancer cells.
  • Eat Budwig cream.
  • Eat and drink greens.
  • Spend time outdoors, as much time as you can, moving, breathing fresh air, exposing your skin to the sunlight.
  • Keep low stress levels, as low as possible. Take tulsi, ashwagandha, and HTP-5 to keep stress hormone levels low, and mood high.
  • Take probiotics, chlorella and spirulina in the morning, and a colon cleansing supplement before bed.
  • Sleep well, long restful nights. Melatonin is very useful for this, and has many additional health benefits.

Cancer is very easy to prevent, but somewhat harder to dislodge once it has taken hold somewhere within the body. But no matter what type of cancer, how localised or generalised it is, or at what stage it finds itself, there is always hope. Hope of getting better and more comfortable, and hope for a complete recovery.

We have to remember that cancer cells are degenerate and weak. By making the environment as health-promoting to normally functioning cells, and simultaneously as hostile as possible to cancer cells, they will perish and be cleared out from the body as the waste that they are. The body heals itself, often miraculously quickly, when impediments are removed, and the elements needed for healing are provided. With all my heart, I hope this can help you and your loved ones.

If you think this article could be useful to others, please ‘Like’ and ‘Share’ it.

The sun, our Earth, and the colour of your skin

Skin colour is the most obviously visible manifestation and expression of our evolutionary history. This history is carried over the course of hundreds of thousands of generations and tens of thousands of years. What we have to understand is that each one of us—as an individual, a person, a self—has nothing to do with the colour of our skin, the colour of our skin has nothing to do with us, and we have no choice in the matter. What we must also understand is that to be optimally healthy, we have to live and eat in accordance with the colour of our skin and what information it carries about our ancestry. All of this is true for you, and it is true for everyone of every colour in the magnificent spectrum of human skin colours as it exists on the planet today. Let me explain why.

skinColourPalette

(Photo credit: Pierre David as published in this article of the Guardian)

The Sun, like every other star in the universe, formed from the gravitational collapse of a huge cloud of gas. This happened about 5 billion years ago. All the planets, like every other planet everywhere in the universe, formed from the left over debris that wasn’t needed or used in making the Sun, and that remained orbiting around it in a large, flat accretion disk consisting of 99% hydrogen and helium gas and only 1% of solid dust particles. In a blink of an eye, a million years or so, the disk was replaced by a large number of planetesimals. An additional couple hundred million years or so, and the planets of our Solar system were formed.

Beyond the snow line, the radius from the Sun past which water can only exist as ice and where the temperature is below -120 C, volatiles froze into crystals, and were formed from massive icy cores the gas giants: Jupiter (the king at 320 times the mass of the Earth), Saturn, Uranus and Neptune. Within the snow line were formed the rocky planets: Mercury, Venus, Earth and Mars. About 4.5 billion years ago the Solar system was in place. It was in place but not quite like we know it today. It was fundamentally different in several ways, especially in regards to what concerns us here, which is how the Earth was: a fast-spinning burning inferno of molten rock spewing out of volcanos everywhere and flowing all over the globe, completely devoid of water, oxygen, carbon and other volatiles species.

The Earth formed more or less simultaneously with a very close neighbour about the size of Mars. Inevitably, soon after their formation, they collided. This apocalyptic encounter tilted the Earth off its original axis and destroyed the smaller planet that, in the collision, dumped its iron core into the Earth, and expelled about a third of our planet into the atmosphere. Most of the stuff rained back down, but some of the material lumped into larger and larger lumps that eventually resulted in the moon, our moon. When it formed, the moon was a lot closer—it would have looked twice as large as it does now, and the Earth was spinning approximately five times faster than it does today—a day back then would have lasted only 5 hours. Because of the proximity between them, huge tidal forces would have deformed the liquid Earth on a continuous cycle driven by its super short 5-hour days. This would have heated the Earth tremendously by squeezing its insides from one side and then from the other, and caused massive volcanic activity all over the globe.

But this inelastic gravitational interaction, this drag of the moon on the Earth worked, as it still does, to sap rotational energy from the Earth and transfer it to the smaller and far less rotationally energetic moon. This made, and continues to make, the Earth slow down, the moon speed up and therefore drift out into a progressively larger orbit. The moon’s drag on the Earth continues to make the Earth’s spin slower and the moon’s orbit larger, but at an increasingly slower rate, now of 3.8 cm per year. This will continue until there is no more rotational energy to be transferred from the Earth to the moon, at which point we will be tidally locked in order with the moon, and not only will we always see the same side of the moon as we do today, but the moon will also always see the same side of the Earth. For what it’s worth, this will happen way after the Sun has come to the end of its life, and thus in more than 5 billion years. So, for now, this is definitely not a major issue.

Besides this important difference in the Earth’s spin rate and its relationship with the moon, there were a lot of left overs from the Sun’s formation that had clumped up in asteroids and comets whirling around in all sorts of both regular and irregular orbits that had them sweeping across the Solar system from the furthest reaches and most distant places to the inner regions near the Sun and rocky planets. The Heavy Bombardment lasted for a period of approximately 500 million years from about 4.3 to 3.8 billion years ago. During this tumultuous early history of our Solar system, a lot of these asteroids and comets flying past the Earth and the other rocky inner planets were gravitationally captured and pulled in towards the planet to crash on the surface or just swoop down into the atmosphere, leaving behind all or some of their mostly volatile constituents: water and carbon compounds. The Earth would have been regularly bombarded by massive asteroids, and the energy dumped by the impacts would have made it a hellish place covered in flowing lava, obviously without any crust, but rather only molten rock flowing everywhere and volcanos spewing out noxious gases and spilling out more molten rock that merged into the already flowing streams of lava. Very inhospitable.

But with these brutal hundreds of millions of years of bombardment from asteroids and comets, water and carbon compounds were brought to our planet. Given how hot it was, the water was in the atmosphere as vapour, and so were the carbon monoxide and dioxide as well as methane. However, these were now bound to the planet gravitationally and couldn’t escape back into space. Once the bulk of the randomly orbiting solar system debris had been cleared out and incorporated into the various planets onto which they had fallen, the bombardment came to an end, and the Earth started cooling down. It is believed that the last major sterilising impact would have hit the Earth around 3.9 billion years ago.

Cooling during a few thousand years allowed the formation of a thin crust. Further cooling then brought on thousands of years of rain that dumped most of the water vapour from the atmosphere onto the surface. This formed vast planet-spanning oceans. The whole planet was at this point still super hot, but also super wet, and therefore super humid, with the surface practically entirely underwater, lots of active volcanos all over the place but otherwise no mountains. Nevertheless, there would have been some  slightly more elevated places, like on the flanks of volcanos, that would have been dry at least some of the time, leaving some spots where water could accumulate in ponds and stagnate. As soon as these conditions were present, around 3.8 billion years ago, the Earth saw its first microbial life emerge.

Claims for the earliest evidence of life at 3.8, 3.7 or 3.5 billion years are still controversial, but it is well established that hydrogen cyanide dissolved in water produces a diversity of essential biological molecules like urea, amino acids and nucleic acid bases; that formaldehyde in slightly alkaline water polymerises to form a range of different sugars; that amino acids, sugars and nucleic acid bases as well as fatty acids have been found in carbonaceous meteorites; and that by 3 billion years ago, prokaryotes (organisms made of cells without a nucleus) were widespread.

There was a major problem, a major impediment to life, that had to be overcome. This was the fact that the entire surface of the Earth was exposed during the day to the Sun’s UV radiation, and UV rays destroy biological structures and DNA. The cleverest of tricks would have been to find a way to absorb these energetic photons and use the energy for something.

Nature is very clever: by 3.5 billion years ago, chlorophylls believed to have developed in order to protect proteins and DNA of early cells appeared, and chlorophyll-containing cyanobacteria—the oldest living organisms and only prokaryotes that can do this—had developed the ability to absorb light, use that energy to split water molecules and use the free electron from the hydrogen atom to sustain their metabolism, spewing out the oxygen in the process. Oxygen accumulated in the crust for a billion years before the latter became saturated with it and unable to absorb any more. Evidence for increasing oxygen levels in the atmosphere is first seen at around 2.5 billion years ago. By 2.2 billion years ago, oxygen concentrations had risen to 1% of what they are today.

Increasing concentrations of reactive and corrosive oxygen was devastating for all forms of life that, at this stage, were all anaerobic: the oxygen was combining with everything it got in contact with creating all sorts of reactive oxygen species (free radicals) that went around causing damage, exactly as they do in our bodies and that of all animals today, and which, in the absence of antioxidants to neutralise them accelerated ageing and death. These were the only card that these simple anaerobic organisms were dealt.

Nevertheless, for another reason entirely, atmospheric oxygen was a blessing because it turned out to be an excellent UV shield. Not only that, but the splitting of oxygen molecules (O2) into oxygen atoms promoted the recombination of these free-floating oxygens into ozone (O3) that turns out to be an even better UV absorbing shield. So, the more photosynthesis was taking place on the surface, the greater the concentration of atmospheric oxygen grew. The more molecular oxygen there was in the atmosphere, the more ozone could be formed. And the more ozone there was to protect and shield the surface from the harsh UV radiation from the Sun, the more complex and delicate structures could develop and grow. Pretty cool for a coincidence, wouldn’t you say?

By 2 billion years ago—within 200 million years—the first eukaryotes appear (organisms made of cells with a nucleus). This makes good sense considering that these simple organisms and independently-living organelles had a great survival advantage by getting together in groups to benefit from one another and protect each other behind a membrane while making sure the precious DNA needed for replication and proliferation was well sheltered inside a resilient nucleus. Note here that these would have been trying to protect themselves both from the damaging UV radiation streaming down from the Sun (it’s estimated that DNA damage from UV exposure would have been about 40 times greater than it is today), as well as from the corrosive oxygen floating in the air (imagine how much more oxidising it is today with concentrations 100 times greater than they were). And in there, within each of these cells, there were chloroplasts—direct descendants from the first UV absorbers and converters, the cyanobacteria—whose job was to convert the photons from the sun into useful energy for the cell.

In all likelihood unrelated to this biological and chemical evolution of the Earth’s biosphere and atmosphere, a long period of glaciation between 750 and 600 million years transformed the planet into an icy snow and slush ball. And with basically all water on the surface of the globe having frozen over, all organisms under a thick layer of ice and snow, photosynthetic activity must have practically or completely ceased. Fortunately, without liquid water in which to dissolve the atmospheric carbon dioxide into the carbonic acid that in turn dissolves the silicates in the rocks over which is streams and carries down to the ocean floor for recycling by the active tectonic plates, all the carbon dioxide sent into the atmosphere by the volcanos just accumulated. It is believed to have reached a level 350 times higher than it is now. This is what saved the planet from runaway glaciation.

Thanks to this powerful greenhouse of CO2, the ice and snow eventually melted back into running streams and rivers, and flowing wave-crested seas and oceans. With water everywhere and incredibly high concentrations of CO2, plant life exploded. And soon after that, some 540 million years ago, complex animals of all kinds—molluscs, arthropods and chordates—also burst into existence in an incredible variety of different body plans (morphological architectures), and specialised appendages and functions. This bursting into life of so many different kinds of complex animals, all of them in the now already salty primordial oceans, is called the Cambrian Explosion. Complex plant life colonised the land by about 500 million years ago, and vertebrate animals crawled out of the sea to set foot on solid ground around 380 million years ago.

Clearly, all plant life descends from cyanobacteria, first to develop the ability to absorb UV radiation, and without complex plant life, it is hard to conceive of a scenario for the evolution of animal life. The key point in this fascinating story of evolution of the solar system, of our Earth and of life on this planet as it pertains to what we are coming to, is that the light and energy coming from the Sun are essential for life while being at the same time dangerous for the countless living organisms that so vitally depend on it. In humans and higher animals this duality is most plainly and clearly exemplified by the relationship between two essential micronutrients without which no animal can develop, survive and procreate. These vital micronutrients are folate and vitamin D.

What makes folate (folic acid or vitamin B9) and vitamin D (cholecalciferol) so important is that they are necessary for proper embryonic development of the skeleton (vitamin D), and for the spine and neural tube as well as for the production of spermatozoa in males (folate). Vitamin D transports calcium into the blood from the intestinal tract making it available to be used in building bones and teeth; folate plays a key role in forming and transcribing DNA in the nucleus of cells, making it crucially important in the development of all embryonic cells and quickly replicating or multiplying cells (like spermatozoa).

Here’s the catch: vitamin D is produced on the surface of the skin (or fur) through the photochemical interaction of the sun’s UV-B rays and the cholesterol in the skin; folate is found in foods, mostly leafy greens (the word comes from the latin folium that means leaf), but it is broken down by sunlight.

What this translates to is this: too little Sun exposure of the skin leads to vitamin D deficiency, which leads to a deficiency in the available and useable calcium needed to build bones, which in turn leads to a weak, fragile and sometimes malformed skeletal structure—rickets; too much Sun exposure leads to excessive breakdown of folate, which leads to folate deficiency, and which in turn leads to improper development of the quickly replicating embryonic cells of the nervous system and consequent malformation of the neural tube—spina bifida.

The most important thing of all for the survival of a species, is the making and growing of healthy babies and children so that they can make and grow other generations of healthy babies and children. This is true for all living beings, but it is not just true: it is of the highest importance, and it has been—taking evolutionary precedence over everything else—since the dawn of life on Earth. Here is how the biochemistry of the delicate balance between these two essential micronutrients evolved.

Six to seven million years ago, our oldest ape-like ancestors walked out of the forest and into the grassy savannah most probably to look for food. (Isn’t this what also gets you off the couch and into the kitchen?). It is most probably the shift in climate towards hotter and dryer weather and, in response to that, the shrinking of their woodlands, that pushed them to expand their foraging perimeter out into the plains that were growing as the forests were shrinking.

Our first australopith ancestors, these ancestors that we share with modern chimpanzees, would have been in all likelihood covered in hair with pale skin underneath (just as chimps are today), their exposed skin growing darker in time with exposure to sunlight. Having left the forest cover, they were now exposed to the hot scorching Sun most of the day, while walking around looking for food, before going back to the forest’s edges to sleep in the trees.

Natural selection would now favour the development of ways to stay cool and not overheat. This meant more sweat glands to increase cooling by evaporation of water on the surface of the skin. It also meant less hair for the cooling contact of the air with the wet skin to be as effective and efficient as possible. But less hair implied that the skin was now directly exposed to sunlight. To protect itself from burns and DNA damage, but also to protect folate, natural selection pushed towards darker skin: more melanocytes producing more melanin to absorb more photons and avoid burning and DNA damage.

In these circumstances, the problem was never too little sun exposure; it was too much exposure, and thus sunburns and folate deficiency. So these early hominids gradually—and by gradually is meant over tens of thousands of years—became less hairy and darker-skinned. They also became taller and leaner, with narrow hips and long thin limbs: this gave less surface area exposed to the overhead sun but more skin surface area for sweating and cooling down, together with better mechanical efficiency in walking and running across what would appear to us very long distances in the tens of kilometres every day, day after day, in foraging and hunting, always under a blazingly hot sunshine. This process that is described here in a few sentences took place over millions of years, at least 3 or 4 and most probably 5 or 6 million years. The Turkana boy, a 1.6 million years old fossilised skeleton is definitive proof that by that time, hominids were already narrow-hipped and relatively tall.

From an evolutionary standpoint it couldn’t be any other way. While keeping in mind that we are still talking about ancient human ancestors, and not modern homo sapiens, nonetheless, did you, as you were reading these sentences, start to wonder who today would fit such a physical description of being hairless, dark-skinned, tall, lean and narrow hipped? Naturally: savannah dwelling modern hunter-gatherers, and, of course, the world’s best marathon runners. It makes perfect sense, doesn’t it?

Taking all currently available archaeological, paleontological, anthropological, as well as molecular and other scientific evidence as a coherent whole brings us to the most plausible scenario in which all humans on the planet today descend from a single mother who was part of a community of people living somewhere on the western coast of Africa; that it is this group of modern homo sapiens that first developed and used symbolic language to communicate and transmit information and knowledge acquired through their personal and collective experiences; and that it was descendants of these moderns who migrated in small groups, in a number of waves, first into Asia and later into Europe, starting 70 to 100 thousand years ago.

It is very interesting that we also have evidence that moderns had settled areas of the middle east in today’s Israel and Palestine region as early as 200 thousand years ago, and that these moderns shared the land and cohabited with Neanderthals for at least 100 thousand years, using the same rudimentary tools and technologies, without apparently attempting to improve upon the tools they had. Meanwhile, this other group of western African coast moderns had far more sophisticated tools that combined different materials (stone, wood, bone), as well as decorative ornaments and figurines.

Thus, although equal or close to equal in physical structure, appearance, dexterity and skills—a deduction based on fossils and evidence that newer and better tools were immediately adopted and replicated in manufacture by moderns to whom they were introduced by other moderns—it is clear that different and geographically isolated communities of moderns ate differently, lived differently, developed differently and at different rates.

This is not surprising, really. Some children start to speak before they turn one, while other do not until they are two, two and a half or even three. Some children start to walk at 10 or 11 months, while others just crawl on the ground or even drag their bum in a kind of seated-crawl until they are three or more. And this is for children that watch everyone around them walking all day long, and listen to everyone around them speak using complex language also all day long. Now, what do you think would happen if a child grew up without being exposed to speech? Why would they ever, how could they ever start to speak on their own, and to whom would they speak if nobody spoke to them?

Fossil evidence shows that the structures in the ear and throat required for us to be able to make the sounds needed for refined speech and verbal communications were in place (at the very least 200 thousand years ago) tens and even hundreds of thousands of years before the first evidence of symbolic thought (70-50 thousand years ago) and together with it, it is assumed, advanced language.

Symbolic thinking in abstract notions and concepts is the most unique feature of our species. It is the hallmark of humans. And it is the most useful and powerful asset we have in the evolutionary race for survival. Sophistication in symbolic thought can only come with sophistication in language and in the aptitude for language: it is only by developing and acquiring more complex language skills that more complex symbolic thinking can come about, and more sophisticated symbolic thinking naturally leads to developing a more sophisticated and refined language in order to have the means to express it.

It’s surely essential to recognise that this is as true for our ancestors, those that developed that first symbolic language, as it is for you and me today. The difference is that then, the distinction was between those few moderns that used symbolic language and those that didn’t, whereas today, the distinction is more subtle because everyone speaks at least one language to a greater or lesser extent. Nonetheless, anyone can immediately grasp what is described here by listening to Noam Chomsky lecture or even just answer simple questions in the course of an interview.

As they moved northward, settling in different places along the way, staying for thousand or tens of thousands of years, then leaving their settlements behind, either collectively or in smaller groups, and moving on to higher latitudes before settling again somewhere else, these people encountered a wide range of different climates and geographical conditions: usually colder, sometimes dry and sometimes wet, sometimes forested and sometimes open-skyed, sometimes mountainous and sometimes flat. In all cases, they were forced to immediately adapt their living conditions, building suitable dwellings and making adequate clothing. This, we know for sure, because they would have simply not survived otherwise, and it is only those that did survive that are our direct ancestors.

Evolutionary adaptation through natural selection of traits and characteristics arising from small—and, on their own, insignificant and typically unnoticeable—random genetic mutations also took place as it does in every microsecond and in every species of animals and plants. But this, we know to be a slow process that is measured on the timescale of tens of thousands of years (10, 50 even 100). Now, consider the evolutionary pressure—the ultimate evolutionary pressure—of giving birth to healthy and resilient offspring that will grow up to learn from, take care of, and help their parents. The most pressing evolutionary need at these higher latitudes was for the body to more efficiently make and store vitamin D from the incoming UV-B rays that, (and this is an important detail often overlooked or under appreciated), make it to the surface only when the Sun is high in the sky and have less atmosphere to go through. This stringent restriction on the few hours near midday when UV-B can make it to the surface is both constraining and life-saving: it is constraining because only during those hours can the essential vitamin D be made, and it is life-saving because a continual exposure to this energetic, DNA-damaging UV radiation would in time sterilise the surface of the entire planet.

The higher the latitude, the lower the Sun’s path on the sky throughout the year and especially during the winter months. Therefore, the shorter is the season during which UV-B rays reach the surface and during which it is possible for vitamin D to be produced on the skin or fur of animals. The only solution to this severe evolutionary pressure is as little body hair and as little pigmentation as possible (think of the completely white polar bears, arctic wolves, foxes and rabbits). As an aside, what else do you think as advantageous in the cold? The opposite as what is in the hot sun: more volume for less surface area; a smaller and stockier build that keeps heat better, exactly as we see in the cold-adapted Neanderthal.

Settled in a place that provides what we need to live relatively comfortably, we tend to stay there. This has always been true, and even if it has changed in the last few generations in industrialised western countries, we have witnessed this phenomenon up until very recently on islands like Sardinia, Crete, or Okinawa, remote valleys in the Swiss Alps, the Karakoram, Himalayas or Andes, and in other geographically isolated pockets of people with genetic characteristics homogenous amongst themselves but distinct with respect to other human populations. And thus across the world we find a whole spectrum—a rainbow—of different colours and shades of skin, different colours of hair and eyes, different amounts and textures of body hair, of different physical builds and morphologies, of different metabolic and biochemical sensitivities, all seen on a continuum, all dependent upon the evolutionary history of the subpopulation where particular characteristics are seen to be present or absent to a greater or lesser extent, and all of this driven by the evolutionary pressures to adapt and maximise the survival probability of our offspring, our family, our clan, our species, by optimising the amount of folate and vitamin D through the delicate balance between not enough of the latter from under-exposure to UV-B’s that produce it, and not enough of the former from excessive exposure to the same UV-B’s that destroy it.

What this tells us is that, for one thing, we have absolutely nothing to do with the colour of our skin, eyes and hair, and nothing to do with any of the physical and biochemical characteristics we have inherited. It tells us that this has nothing to do with our parents or grand parents either, really, because these are particularities that have evolved over tens of thousands of years of evolution in a very long line of ancestors that settled in a place, stayed put and lived at a particular latitude in a particular geographical setting with a particular climate. It tells us, in the most obvious manner, that because this is so, discrimination based on colour or physical features is not jut unfounded, but it is simply absurd.

If you’re black, you’re black. If you’re white, you’re white. If you’re chocolate or olive-skinned, then you’re chocolate or olive-skinned. If you are “yellow” or “red” then that’s just how it is. And who cares how you phrase it or not, try to be “political correct” and avoid speaking of it. That’s just silly. All of it is simply just the way it is. In the same way, if you’re short or tall, hairy or not, thin or stocky, it is just the way it is. However you are and whatever features you consider, there is never anything more or less about it, never anything more or less about any of these features: it is an expression of our genetic ancestry going back not just a few but hundreds of thousands of generations.

What this also tells us is that we have to take this information into account in everything we do, especially in regards to what we eat, where we live, and how much or how little we expose ourselves to the Sun’s vitally important UV-B rays. Disregard for these fundamentally important details leads to what we see in the world in this modern era where we all live wherever we want, more or less, and find ourselves with our olive or dark brown skin living in at high northern latitudes, or with our fair or milk-white skin living near the equator with strong overhead sun all year round, and see the consequent high rates of vitamin D deficiency and rickets in our dark-skinned northern dwellers, together with the similarly high rates of folate deficiency and spina bifida in our fair-skinned southern dwellers.

In general, if you are dark-skinned you need to expose your skin to the sun a lot more than if you are fair-skinned, because you will both produce less vitamin D and store less. If you are fair-skinned you need less exposure and will tend to store the vitamin D more efficiently for longer periods of time. As for folate, we all need to eat (or drink) leafy greens (i.e., foliage) and green veggies.

However, there is an additional complication that makes matters worse (far worse) That complication is that in this day and age, we all live inside, typically sitting all day facing a computer screen, and sitting all evening eating supper and then watching TV. Not everyone, of course… but most people. Not only that, but most of us all over the world now eat more or less the same things: highly processed packaged foods usually high in processed carbs and low in good, unprocessed fats, high in chemicals of all kinds and low in nutrients, and hardly any leafy and green veggies or nuts and seeds. And boy do we love our Coke, our daily bread, our fries and potatoes, our pizzas and big plates of pasta, and our sweets and desserts! Not everyone, of course… but most people. Consequently, we are all as deficient in folate as we are in vitamin D. We are all as deficient in unprocessed fats and fat-soluble vitamins as we are in all other essential micronutrients. How depressing.

But once we know this, once we have been made aware of this situation, we can correct the problem by switching to a diet of whole foods—of real foods—rich in folic acid and fat-soluble vitamins like A, D, E and K2, (the inuits, for example, get all their vitamin D and the other fat-soluble vitamins from the fat of the whales and seals they eat), and supplementing adequately to maintain optimal levels of both vitamin D (80-100 ng/ml or 200-250 nmol/L) and folate (>5 ng/ml or >11 nmol/l), especially during conception, pregnancy and early childhood, but throughout life and into old age.

There’s one last thing I wanted to mention before closing, and in which you might also be interested: can we ask if one is more important then the other, folate or vitamin D, and do we have a way to answer this question from an evolutionary standpoint? Well, here is something that suggests an answer: in all races of humans on Earth, women are on average about 3% lighter in skin colour than men of the same group. For decades, researchers (mostly old men, of course) were satisfied with the conclusion that this was the result of sexual selection, in the sense that men preferred lighter skinned women and so this is how things evolved over time. Of course, most of you will agree with me now that this just sounds like a cop-out or at best a shot in the dark from a possibly sexist male perspective.

Most of you will surely also agree that considering the question from the perspective of the importance of vitamin D versus folate is clearly more scientific in spirit than claiming sexual selection to explain the difference. And if women are lighter than men no matter where we look on Earth, this strongly suggests that it is either more difficult to build up and maintain good levels of vitamin D to ensure healthy offspring, or that it is more important. In today’s world, it certainly is true that it is far easier to have good levels of folate because even if you stay inside all day, as long as you eat leafy greens or drink green juice, your folate levels will easily be higher than the optimal minimum of 5 ng/ml, and probably much higher, like mine which are five time higher than that at 25 ng/ml.

So, for us today, especially if we eat greens, there is no question that we have to pay much closer attention to our vitamin D levels that tend to be way too low across the board all over the world. We can hypothesise that if we continue evolving over millennia following this indoors lifestyle that we have, humans everywhere will continue to lose both body hair and pigmentation, even those who live in sunny countries, because they don’t expose themselves to the Sun. I would like to encourage you to instead expose your skin to the amount of sunlight that is in accord with your complexion, drink green juice, monitor your vitamin D levels at least once per year, and take supplements to ensure both stay in the optimal range (I recommend taking A-D-K2 together to ensure balance between them, better absorption and physiological action). That alone, even if you don’t do anything else, will be of great benefit to you, and, if you are a soon-to-be or would-like-to-be mother, of even greater benefit to your child or children.

And next time you go out, and each time after that, pay attention, look and appreciate the amazing richness and beauty of all the different skin colours and unique physical features of all the people you see all around. What you will be seeing is the inestimable richness and incalculable pricelessness of our collective human ancestry expressing itself vividly and openly, nothing held back and nothing hidden, for everyone to see and appreciate.

If you are interested in reading more about the topics touched upon in this article, its contents draw from the books Life in the Universe, Rare Earth, Masters of the Planet, The Story of the Human Body and the Scientific American special issue Evolution that features the article, entitled Skin Deep, that prompted me to write this post. And please share this post: we all need to do what we can to help overcome discrimination based on race and appearance.

If you think this article could be useful to others, please ‘Like’ and ‘Share’ it.

Treating arthritis II: cleansing, nourishing and rebuilding

Preventing arthritis is easy. Unfortunately, everything everyone does, or almost, promotes arthritis. But not just arthritis, all inflammatory degenerative conditions. The amazing thing is that what must be done to prevent any of them is quite well known. We have covered a lot of material relating to this already, and it was made clear at the start of Treating arthritis I, that natural healing, even when motivated by the healing of a particular condition, is done through healing the entire organism—all cells, all tissues, all organs, all parts—all at once. Therefore, we could just as well entitle this article “treating arthritis and all other inflammatory degenerative disease conditions” because the approach is fundamentally always the same.

Treating arthritis after it has already developed is not as easy as preventing it, but the extent to which it can be reversed and cured depends firstly on our own dedication and determination, and secondly on the state of the body and amount of damage it has sustained. The first article on arthritis was posted a while back. Its writing was motivated by my wish to help a friend who suffers from a highly debilitating form of arthritis for which conventional approaches are mostly inadequate—as inadequate as they are for all other degenerative chronic conditions.

It is useful for me to know that even if these efforts of were in vain in the sense that they were not acknowledged and didn’t motivate in them to make the recommended changes in lifestyle and diet, the article must have made some difference to some people because it has at this point been viewed more than 4600 times, and is the most viewed of all the posts on the blog after the Welcome page. If you are among the millions of people who suffer from arthritis, and also happens to be one of those who read Treating arthritis I, I hope you found it useful, and you are most welcome to let me and every other reader know how.

There is an obvious difficulty in overcoming any state of disease, especially one like arthritis. It is that everything about our success depends on our efforts to foster and nurture the conditions under which the organism can heal and repair itself. This is the only way to regain health. I want to emphasise this more explicitly:

It is only by creating, fostering and maintaining the biochemical, hormonal and physiological conditions under which the organism has the ability to clean, repair and rebuild its cells, tissues and organs that disease conditions—no matter what they are—can be prevented, overcome, reversed and recovered from. What we are required to do is provide the organism what it needs to do this.

The fundamental elements we concentrated on in the first part were: hydration, alkalisation, and magnesium. As was underlined, these are essential for everyone, but primordial for arthritis relief. The detailed recommendations were intended to help establish good habits. Their essence should be understood as follows.

what-arthritis-pain-feels-like-722x406

Illustration of painful, inflamed, arthritic joints. (Image taken from Everyday Health)

Every day, from the moment you get out of bed, your primary concern should be to hydrate and alkalise. This is particularly important in the morning and the first part of the day. There is a natural daily cycle governed by the circadian rhythm which controls all processes in the organism by a delicate balance of a vast number of different hormones. A good example relating to the hydration-dehydration cycle, is that the hormone calcitonin whose role is to put calcium from the bloodstream into bones and teeth, is active at night as dehydration sets in: as the water content of the blood decreases, the kidneys release renin and angiotensin, calcitonin is activated, and can thus do its work for fixing calcium where it is needed, subject to adequate amounts of the all-important fat-soluble vitamins D and K2. There are surely many more hormonal processes that depend on the diurnal cycle than those we currently know of. The point to remember is that we have to make hydration and alkalisation a priority in our life, and repeat this every day, while allowing dehydration during the night by typically having our last drink of water between 19 and 20 hours and nothing else until the morning.

Hydration and alkalisation are most effectively done when there is no food in the stomach, and both depend critically on maintaining a balanced intake of water and unrefined salt. An easy way to keep track of both and ensure optimal balance, is to prepare capsules filled with unrefined sea salt, taking one capsule for every half liter of water tea or green juice. This is particularly useful when doing a cleanse. In normal circumstances, it can also easily be achieved by having watery veggies like cucumber, celery or kohlrabi with liberal amounts of salt a couple of times a day. It is ideal to finish drinking about 30-45 minute before eating and not drink for two to three hours after. This leads to a natural rhythm of drinking, waiting, eating, waiting, and repeating this pattern throughout the day.

As this is so, it is easiest to hydrate and alkalise thoroughly each day by adopting a regime based on having only one big meal in the late afternoon or early evening, leaving the rest of the day before that to focus on these crucial aspects of our optimal health without the constraints of the timing surrounding eating. Snacking on raw veggies and salt is perfect and can be done at any time regardless of drinking, because it is also a kind of drinking: watery veggies are basically water with minerals, enzymes, phytonutrients and some fibre. Intermittent fasting, as is called, has many metabolic and physiological benefits not least of which is natural detoxification.

We have looked at some of the key aspects of this practice in The crux of the intermittent fasting, and I plan to deepen this investigation in the future, but maybe the most useful consequence of it, which should also come across as a rather obvious, is that if the body is getting food of any kind that requires processing, then it will immediately engage in doing just that: processing it to extract what it can from it.

Food processing is prioritised and mobilises much of the body’s energy and resources: blood supply (directed to the stomach), secretions from the digestive organs (acid and enzymes from the stomach; insulin, bicarbonate and more digestive enzymes from the pancreas; and bile produced by the liver and stored in the gallbladder), active transport across the intestinal wall into the bloodstream, increased workload on kidneys and liver in filtering metabolic wastes out of the blood, and although you don’t feel it, you can be sure that this does indeed require a lot of energy and bodily resources.

Allowing the body to rest from all this food processing related physiological activity leaves all this energy for other tasks which generally fall in the category of “clean and repair”. This is the natural detoxification that the body desperately needs to engage in as often and regularly as possible but unfortunately cannot because we are, from the time we wake up to the time we go to bed, almost constantly eating. As soon as we take the foot off the gas pedal and give the system a much-needed break from food processing, the organism immediately begins to clean and repair itself. This is why fasting is so good.

Now, if you, in addition to that, provide the organism with a supply of vital nutrients—enzymes, vitamins, minerals—in a form that requires no digestion and is immediately absorbable from the intestines into the bloodstream in the form of vegetable juices, this becomes an amazing way to bring about self-healing in what will indeed look like a most miraculous manner depending on how sick we are at the onset. This is what happens during a juice fast or cleanse, and although fasting has been practiced for centuries, and juice fasting for many decades, both with awe-inspiring results, one recent and vocal advocate of juicing cleanses for healing is the Englishman Jason Vale who runs the Juicy Oasis retreat and healing centre in Portugal (see Superjuice Me on FMTV).

Arthritis sufferers would do extremely well to consider doing such a juice fast as well as adopting intermittent fasting as a long-term daily practice. These measures—in and of themselves—could resolve the problem permanently in a relatively brief period of time.

The importance of magnesium was also emphasised in Treating arthritis I. The best is to have baths with one cup of nigari and one cup of baking soda at least once a week (a couple of times is great, and in some circumstances you may want or need to have them every other day). We should soak the whole body for 45–60 minutes. Magnesium oil, a saturated solution of nigari in water, is also very effective. Putting it on the skin of the arms, upper back and neck, chest and belly, legs and bum, avoiding sensitive skin of the armpits and genital area, and leaving it at least 30 minutes before showering. It can work wonders to loosen tight, achy or cramping muscles, and will often do this quickly from the first application. It doesn’t need to be done every day, but it can for several months without risking overwhelming the system with too much magnesium. Oral supplementation with liposomal (fat-bound) magnesium is also a very good idea.

Once we have understood the importance of these elements of health, healing and recovery that are hydration, alkalisation, magnesium, juicing green vegetables and intermittent fasting, and incorporated them into our life as fundamental pillars of optimal health, then we can and must turn to the question of what to eat when we do eat.

When we consider what to eat from the perspective of eating to most effectively promote health, the considerations can be very different from what they might be were we to take any other point of view as to our primary motivation. For optimal health, the first and foremost important consideration is the old and well-known principle first do no harm. This means what it says, but more explicitly means to not eat anything that has or may have detrimental effects on the organism. Using “has” implies negative effects have been identified and demonstrated to a lesser or greater extent, whereas “may have” means that even though there may be little, inconclusive or no evidence, there are nevertheless reasons to be skeptical or at least cautious about its safety or health benefits. Simple examples include cigarette smoke that is well established to have multiple negative impacts on our health, and industrial pesticides demonstrated to be endocrine disruptors or neurotoxic: a new brand of cigarettes or a new yet untested agricultural pesticide should therefore also be considered as potentially harmful. This is just common sense.

Following this principle encourages us to eliminate industrial chemicals and additives from our food and drink, but also from our cleaning and body care products. This can sound as an obvious and simple first step, but it is not so easy nor so simple without considerable care and attention to detail. Moreover, it also implies, right from the start, no industrially processed products of any kind, and that is a major step for most people given the state of affairs and average dietary regime of the bulk of the population in industrialised countries.

Assuming you are reading this because you are already on the lookout for better ways of doing things, as well as already feeding yourself with real food, this is not such a big deal. And in practice, it means this: buy and eat only whole organically grown or raised food, use only the simplest and most benign organic cleaning and body care products, drink the highest quality filtered or natural spring or mineral water that is certified to be free of known major and minor pollutants, and take only the highest quality supplements. Doing only this ensures an already excellent base for a healthy lifestyle, and it is already enough to avoid and prevent a lot of potential health disorders.

It is, however, not enough if our goal it to be optimally healthy, never have any health disorders at all, and live strong and vibrant to 100, 120 or 140 years of age. It is, also, not enough if we are trying to stop progression, reverse already existing damage, and eventually recover from our own arthritic condition that may have been causing us pain for years or decades. In either case, we need to go further.

The statement in the opening paragraph about the universality of the natural healing approach to treatment and prevention of disease conditions is here both appropriate and necessary to emphasise:

the most fundamental characteristic of but also driver in progressively worsening arthritis symptoms and degeneration is chronic systemic inflammation;

the most fundamental characteristic of but also driver in progressively worsening cardiovascular heart disease symptoms and degeneration is chronic systemic inflammation;

the most fundamental characteristic of but also driver in progressively worsening cardiovascular brain disease symptoms and degeneration is chronic systemic inflammation;

the most fundamental characteristic of but also driver in progressively worsening Alzheimer’s disease symptoms and degeneration is chronic systemic inflammation;

the most fundamental characteristic of but also driver in progressively worsening multiple sclerosis symptoms and degeneration is chronic systemic inflammation;

the most fundamental characteristic of but also driver in progressively worsening Crohn’s disease symptoms and degeneration is chronic systemic inflammation;

and, of course, the most fundamental characteristic of but also driver in progressively worsening type II diabetes symptoms and degeneration is also chronic systemic inflammation,

even if we know that the root cause of this diabetes is chronically elevated glucose and insulin levels, that this leads to systemic inflammation, which in turn leads to the pathological symptoms and degeneration, something that is underlined by the fact that diabetics suffer all other chronic diseases listed above 200-400% more than non-diabetics.

This was a forceful, repetitive, heavy-handed way to express and highlight this fundamental characteristic that is shared by so many disease conditions. But it is, I think objectively, the most important point to have in mind when our intention is to really understand health and to be ourselves, at all levels, an expression and embodiment of health. Because whether it is inflammation in the joints as in arthritis, in the arteries supplying the heart or brain as in cardiovascular disease, in the brain itself as in Alzheimer’s disease, in the nerves throughout the body as in multiple sclerosis, in the lining of the gut as in Crohn’s disease, or basically everywhere in the body as for diabetes, this inflammation—in all cases—is chronic and systemic. Hence, it is this which must be addressed and corrected, and it is addressed and corrected in exactly the same way in every case.

Taking into account differences and thus tuning the treatment, especially in what concerns reversing and repairing existing damage, is important. But it is definitely secondary with respect to the root cause of degeneration that is systemic inflammation. And even these differences whose importance varies depending on the specificity of the condition we aim to address, all of them—when working with natural, nutrition-based medicine—are useful and health-promoting for all conditions: none are detrimental to the treatment of any other specific disease.

For example, supplementing with organic silicic acid, collagen, vitamin C, and vitamin D is essential for repairing and rebuilding cartilage and soft tissues, and thus essential in the treatment of arthritis. It is, however, greatly beneficial for everyone to supplement with these micronutrients because all will benefit from it. It is essential to supplement with and maintain very high levels of vitamin B12 (>1200 pg/ml) when treating multiple sclerosis or Parkinson’s disease, but it is excellent for everyone to do the same. It is essential to supplement with L-Carnosine when treating Crohn’s disease because it is particularly useful for healing the lining of the gut. But it is also very beneficial for everybody to take because it helps to stop and repair the damage caused by glycation, which affects everyone to a greater or lesser extent depending on circulating glucose and insulin concentrations.

And thus, the first principle is to eliminate from our life what causes inflammation: everything that triggers an inflammatory reaction in the body. This obviously includes all allergens which, even if there are some well-known foods that have been recognised as causing allergic reactions, mild or severe, in a large fraction of the population, and could, therefore, be eliminated from our diet directly in order to minimise unnecessary exposure to potentially harmful substances, it is nevertheless ultimately an individual assessment and testing of food intolerance that is needed.

The foods most likely to cause an inflammatory immune system response are gluten-containing grain products and animal milk products. Estimates of intolerance for these two classes of foods—grains and dairy—range between 50 and 75% in most countries, although evolutionary adaptations can have an important effect. Good examples are the indigenous Swiss mountain dwellers and the African nomadic tribe called Masai, who, by consuming most of their daily calories from milk and milk products for thousands of years, have developed the genetic adaptations for the immune system to tolerate the proteins in milk that cause mild to severe allergic reaction in close to 75% of the world’s population, with the most extreme proportions of 90-95\% in the Chinese and other Asian populations that have never, throughout their history, consumed milk products.

The other two classes of foods that are established as inflammatory—highly inflammatory—even if they rarely cause intolerance or allergic reactions, are insulin-stimulating carbohydrates and omega-6 fats. In the case of these substances, it is not inflammation triggered by a reaction to them of the immune system. Rather, they themselves trigger inflammatory biochemical pathways: several hundred inflammatory pathways! These foods should therefore be eliminated from the diet: all simple and starchy carbohydrates, and all vegetable oils. Nuts and seeds, which contain omega-6 oils, can be had whole in small quantities. Olive oil is mono-unsaturated and is the best vegetable oil to use for salads. No omega-6 rich vegetable oil should be used.

I don’t think it’s necessary nor useful to discuss the inflammatory effects of industrial chemicals because we already know that they only cause harm and should be eliminated from our food supply, avoided at all costs in all their other forms by everyone who is even superficially concerned with their health.

This is our first conclusion: to minimise inflammation, it is essential to eliminate inflammatory foods; and the most inflammatory classes of foods are dairy, grains, insulin-stimulating carbohydrates and omega-6 oils. To overcome or prevent inflammatory disease conditions, arthritis but also all others, we have to stop eating these foods. It is as simple as that. And although it is true that we could potentially supplement with adequate types and amounts of enzymes to try to ensure that all types of proteins found in these foods are actually broken down properly during digestion in order to avoid triggering an immune response, it does seem silly to eat or drink something that we know cannot be metabolised correctly and which is, for this reason, harmful to the organism, but still try to mitigate the harm it causes by taking a supplement of those enzymes needed to digest it that do exist even if our body’s genetic and evolutionary makeup doesn’t produce. This reflection applies to dairy and grain proteins to which we are intolerant. It doesn’t apply to insulin-stimulating carbohydrates or omega-6 fats, because these seldom cause allergic reactions in people, but are nevertheless universally inflammatory.

The second principle is to consume anti-inflammatory foods. It should not be a surprise to find out that the most anti-inflammatory foods (think of them as soothing to the body), also tend to be the most alkalising: raw, green, chlorophyl-rich plant foods, and especially green vegetable juices. The most anti-inflammatory and anti-oxidant fat is the miraculously beneficial, highly saturated (96%), and medium chain triglyceride-rich (50%) coconut oil. Hence, without any additional considerations, we already know that an optimally anti-inflammatory and healing diet should be based on mostly raw vegetables and salads, in particular green ones, green juices, and lots of coconut oil from all coconut products.

Also not surprisingly, we can have as much of these nutrient-rich foods as we want, and the more the better. This, it turns out, is an extremely useful selection criterion to determine the level to which something can be good or bad: how much of it we can eat, and what are the consequences, if any, of having increasingly larger quantities; is there an upper limit in the sense that above a certain amount we can expect negative consequences, or is there only a lower limit below which therapeutic value is not noticeable? For what concerns green juices, greens and coconut oil, I would say that there are only lower limits to the minimum we should all intake in order to be perfectly healthy, and no upper limits within what can be considered reasonable through the body’s auto-regulation mechanisms of satiety and digestive function.

For instance, we can drink a 250 or 500 ml of green juice, and that’s great. We can drink 1000 ml and that’s much better. We can drink two or three litres of green juice per day, and that is truly amazingly therapeutic, something that would be done during a juice cleanse. For coconut oil and milk, we can have one or two tablespoons per day, and that’s really good (apparently enough to slow down cerebral degeneration). We can have five to seven tablespoons per day, and that’s far better (apparently enough to reverse early stage dementia and Alzheimer’s). We can have as much as 200 or 300 ml (between 13 and 20 tbsp) of oil per day, and that’s better still. In the case of coconut oil and milk, eating such large quantities amounts to a lot of calories, all from fat which makes us feel really full and not willing to eat anything. This is the body’s natural hormonal messaging system to prevent over-eating and it works perfectly well in this case. It also works well for protein. Only for sugars and starches does it not work so well because we evolved having very few carbohydrates and thus didn’t have to develop the mechanism to avoid overeating them—what pretty much the whole world is doing nowadays.

Most nuts and seeds can be considered as superfoods because of they are very concentrated sources of minerals, antioxidants, unique phytonutrients, vitamins, as well as fat and protein. Because they are seeds, they also have anti-nutrient—phytates and enzyme inhibitors—without which they would not keep for months on end as they do, and would spoil much more quickly. These are not as strong as they are in cereal grains, which have can keep for thousands of years, as they have in some pyramids, and then sprout after soaking in water for a while. This is nature’s very clever way to ensure dry seeds retain the nutrients needed to grow the plant when the conditions are suitable. But it implies that we must do something to them before we can consume them and know that they are wholly beneficial and health-promoting rather than only partially so.

The solution is simple: soak the dry seeds or nuts in water for 24 hours to hydrate them and activate the biological mechanisms responsible for sprouting—to get the seed ready to produce a new plant by making inactive the enzyme inhibitors and phytates—and making all of its nutrients fully available. Soaked nuts and seeds can definitely be eaten hydrated, and are much more filling that way because they hold as much water as their dry weight (they double in weight and volume when fully hydrated), but they can also be dehydrated after having soaked for 24 hours, and be preserved for much longer than the couple of days they can in the fridge before going bad when hydrated. This is what I do at home: 24 hours of soaking with rinsing and changing of the water a couple of times in between, and 24-36 hours of drying in the dehydrator at 45 C to keep all enzymes alive.

Roasting or otherwise heating the nut or seed also neutralises the anti nutrients, but this also destroys the enzymes, making it a dead food that will require the pancreas to produce the necessary enzymes for digestion, as well as cause digestive stress and acidification. Nonetheless, roasted nuts are nutritious and delicious, and thus great to have once in a while. Either way, sprouted or not, nuts and seeds are by their nature nutrient-rich concentrated food and should generally only be had in relatively small quantities (a handful or two). Doing this will also prevent excessive intake of omega-6 fats that make up about 50% of their weight, even if whole nuts and seeds have their own anti-oxidants that give additional protection from free-radicals in the body.

Having a somewhat different status as food, but being naturally most anti-inflammatory, are the trio of ginger, turmeric and garlic. Some may have difficulty digesting garlic (as is the case with onions as well), but ginger and turmeric are generally very easy to digest and actually digestive aids. It is important in the treatment of arthritis to consume them often, even daily, and in liberal amounts. Ginger is very easy to have in relatively large quantity by cold press juicing it in your daily green juice (that’s what we do), which guarantees you a good therapeutic amount on a daily basis. For turmeric, it is also possibly to find it fresh in some places, but it stains everything that it comes in contact with. Mostly for this reason, we take it in capsules, where it can even be concentrated further to be more potent still. The beneficial compounds in turmeric are most effectively absorbed when taken with plenty of fat (coconut fat is perfect).

Animal protein other than from dairy—eggs, meat and fish—is important for the body but also highly acidifying and therefore inflammatory. In addition, the proteins need to be completely broken down first by the acidic gastric juices in the stomach and then by the digestive enzymes in the intestines in order for the amino acids of which they are made to be available to the brain and other organs, but also prevent partially digested proteins from finding their way into the bloodstream and causing additional inflammatory immune responses.

Therefore, we have to eat only small quantities of the highest quality grass-fed or wild caught animal products, give the organism plenty of time to cleanse the metabolic byproducts of their digestion, and, I recommend, supplement with digestive enzymes when eating animal foods. In fact, I recommend taking digestive enzymes whenever you eat cooked foods: we do not want to get anywhere close to exhausting the pancreas’ enzyme-producing potential, because enzymes are far more important for all other molecular repair and rebuild processes than they are for digesting cooked food, and we need to keep them for these purposes if we aim to live healthy for a long time.

This is our second conclusion: to minimise inflammation and maximise repairing and rebuilding of damaged tissues, it is essential to consume the most powerfully anti-inflammatory, nutrient-dense and anti-oxidant foods. The diet should therefore be mostly raw, primarily green vegetables, green juices, special anti-inflammatory foods such as ginger, turmeric and garlic, unlimited amounts of coconut products rich in coconut oil, some sprouted nuts and seeds, and small amounts of clean animal flesh products accompanied with plenty of time for metabolic cleansing on a continual basis. The supplements most important in treating and reversing arthritis are organic silica, collagen complex (Reverse Aging), whole food vitamin C (from The Synergy Company), magnesium (L-Threonate; both from Mercola), B12 (Thorne), the fat soluble vitamins A-D-K (DaVinci), turmeric extract (Organic India and Gaia Herbs), niacinamide (Thorne), and the universally needed but universally deficient iodine (in Lugol’s solution). In addition, it may be really beneficial to take high doses (50000 IU/day) of vitamin D3 for at least three and maybe up to six months or more, in order to set the body on its course to intensive healing and recovery from years of arthritic degeneration. This has been found to be very effective in some people. Supplementing with proteolytic enzymes is also very important to accelerate healing and repair of damaged tissues.

Incorporating these principles and specific recommendations into one’s life, not as a special diet, but as a comprehensive way of taking care of this amazing organism that is the human body mind, will not only treat, reverse and cure arthritis to the greatest extent, and maybe even completely depending on the level of degeneration, but will do the same for all inflammatory conditions, which underlie all degenerative diseases. In addition, the immune system will grow to be so strong that no infectious diseases will be able to take hold or develop within your body: never get a cold, never get a flu, never catch anything at all.

Finally, there are two crucially important factors which are not related to diet, and that in many ways can overshadow all other efforts to heal and remain in optimal health: lack of sleep and psychological/emotional stress. They are more than important: they are foundational. Without good sleep and minimal stress it is impossible to become and remain vibrantly healthy, no matter what else we do or don’t do.

This shouldn’t be understood to mean that if we don’t sleep well or are overstressed there is no point doing anything else. On the contrary! It is all that much more important to do everything else we can. However, it means that if we are already doing everything else, then without correcting the conditions causing us stress and preventing us to get enough restful sleep, we will never reach our optimal health potential.

Having said that, you can be sure that they go hand in hand: optimal nutrition and biochemistry promote less stress and better sleep; better sleep and less stress promote more balanced biochemistry, digestion, cleansing, and cellular rebuilding and repairing. They are the two sides of the same coin, one that is measurelessly priceless: optimal health.

If you enjoyed this article, please Like and share it to help other people.