Reversing calcification and the miracle of vitamin K2

Vitamin K2 is the only known substance that can stop and reverse soft tissue calcification.

If you didn’t stop at the end of that sentence to say Wow to yourself, you should keep reading.

Soft tissue calcification is one of the most serious health problems we face as individuals, as modern societies, and, on a global scale, as a species.  Cardiovascular disease—which leads to heart attacks and strokes, and accounts for nearly half of all deaths in industrialised countries—is a disease of soft tissue calcification: the calcification of our arteries.

Arthritis, of which basically everyone past the age of 40 suffers, and increasingly more with time and with age, is a disease of soft tissue calcification.  It is caused by the calcification of the cartilage in the joints:  the joints of the knees, but also of the shoulders; the joints of the hips, but also of the wrists; the joints of the elbows, but also of the feet and the toes; the cartilage between the vertebrae of the neck and the spine all the way down the back, but also of the hands and of the fingers.

Soft tissue calcification also causes kidney stones and kidney disease.  How many people above the age of 60 don’t have kidney problems?  Hardly any.  And how many young men and women in their 20s and 30s already have kidney stones and kidney dysfunction?  More and more every year.

Every one of the processes generally associated with ageing, from heart disease and stroke, to Alzheimer’s and dementia, to arthritis and kidney disease, to stiffness in the joints and muscles, but also to the wrinkling of the skin, is intimately linked to soft tissue calcification.

And now, let me repeat the sentence with which we opened:  Vitamin K2 is the only known substance that can stop and reverse soft tissue calcification.  It is really remarkable.

Maybe you didn’t know about calcification.  And so, maybe you are wondering why it is such a major and widespread problem, why it affects everyone no matter where we are or what we do.  It’s a good question.  But because we know that only vitamin K2 can prevent this from happening, we already have our answer:  soft tissue calcification is a major and widespread problem because our intake of vitamin K2 is inadequate to provide protection from calcification.

Naturally, the next question is why?  Why is our intake of vitamin K2 so inadequate?  If it is such a crucial essential nutrient, we would surely not be here as a species if intake had always been so inadequate.  Looking at things the other way around, if we are so dependent on adequate K2 intake for staying healthy, this must necessarily mean that we evolved having plenty of it in our food supply.  What’s so different now?

To answer this question with some level of detail—meaning with an explanation more extensive than just saying that it’s industrialisation that stripped our food supply of vitamin K2 as it has for all the essential nutrients to a greater or lesser extent—we have to understand what K2 is, how it’s made, and where it’s found in food.

The short answer is that K2 is found in the fat of pastured animals that graze on fresh green grass, and produced from vitamin K1 by certain kinds of bacteria in their gut.

The longer answer is that vitamin K2 is a family of compounds called menaquinones, ranging from MK-4 to MK-13 depending on their molecular structure.  These compounds are derived from the plant analog, the sister compound, vitamin K1, called phylloquinone, and found in chlorophyll-rich plant foods.  Phylloquinone is consumed by the pastured animal, it makes its way into their intestines, and there it is transformed by the bacteria of the animal’s intestinal flora.  The resulting menaquinone is then stored in the fat cells of the animal as well as in the fat of their milk if they are milk-producing.  Consuming these animal fats in which vitamin K2 has been concentrated will provide this precious essential micronutrient.

If the grazing animal does not feed on green grass, they get no vitamin K1.  If they get no vitamin K1, their gut flora is not only compromised and negatively altered with respect to what it should be if they were consuming the grass they have evolved eating, but it produces no vitamin K2.  If their gut flora produces no vitamin K2, their fat and milk will contain no vitamin K2, and neither their offspring nor any person consuming products derived from the animal will get any vitamin K2.  Hence, no grass feeding, no vitamin K2 in the animal’s fat.

international_dairy_week_banner

It is most natural that grass-eating animals should be grazing on fresh green grass in open pastures.  And yet, it is rather rare.  But without green grass, there is no vitamin K1.  And without vitamin K1 there can be no vitamin K2.

Maybe you’ve already thought ahead, and wondered since it is bacteria that produces vitamin K2 from vitamin K1 in the guts of grazing animals, can’t we make vitamin K2 without the need for grass-fed animals to do it for us?  Yes, it is possible.  Fermented vegetables and dairy products like cheese can also contain vitamin K2.  In fact, in the case of cheese, there is a lot more in the finished hard cheese than in the milk used to make it.  The amount varies widely because it depends on the kind of bacteria.  For dairy products, hard cheeses like Gouda have the most, and for plant foods, even if fermented veggies have a little, the Japanese fermented soybean snack natto is the ultimate source of K2.

As we all know, pastured meat and dairy is not easy to come by in our modern world.  It’s actually quite hard to find.  Our supermarkets and food stores are flooded with industrially produced meat and dairy from animals that have never seen a blade of grass—grass-grazing animals living their entire lives indoors, in stalls, fed and fattened exclusively on grains, corn, and soybeans.  This is how we have stripped our food supply of vitamin K2, and this is why is this a modern phenomenon—most of our grand-parents were still eating pastured meats and animal foods.

And if this wasn’t enough of a blow to vitamin K2 status, trans-fats, which are formed when vegetable oils are hydrogenated to be made saturated and stable (for long shelf life), and which most of us consume in great quantities, contain a K2 analog called DHP (dihydrophylloquinone) that displaces the little K2 that might has found its way into our diet.

It is for all these reasons that soft tissue calcification is so widespread.  And you have at this point what you need to know in order to first stop the process by which your soft tissues are getting increasingly calcified, and then, in time, to remove the accumulated calcium from these tissues.  It’s simple: healthy grass-fed animals produce yellow butter, yellow yolks, and yellowish fat;  you need to eat plenty of pastured animal foods, making sure you eat the fat in which vitamin K2 is concentrated, and, to be sure you have enough to reverse the already present calcification, take K2 supplements.  And this might be enough for you.

If it is, you can head to your browser to find and order some K2 supplements (I currently get mine, it’s a 500 mcg per tablet, from Phoenix Nutrition).  Also, we need to know that the two main forms of K2 are MK-4 (with four double bonds) and MK-7 (with seven).  The first is the one generally found in animal fats that haven’t been fermented, while the second is the product of bacterial fermentation.  Hence, meat and butter contain mostly MK-4, whereas natto, sauerkraut, and cheese contain mostly MK-7.

There is an important difference between these two forms of K2 in terms of their effects inside the body which has to do with their half-life, not in the sense of radioactivity, but in the sense of duration of biological activity in the body.  MK-4 will be in circulation at therapeutic doses for a number of hours, while MK-7 remains in circulation between 24 and 48 hours.  Therefore, to be safe, we need to eat grass fed meat and butter, and take MK-7 supplements (I take 1000 mcg), always after a meal with plenty of fat to maximize absorption.

If you are curious to find out more, if you want to know how menaquinone does this, how vitamin K2 does its miracles inside the body, then we need to take a closer look at the biochemistry of calcium metabolism.

There are three proteins found in bone matrix that undergo gamma-carboxylation via Vitamin K-dependent enzymes: matrix-gla-protein (MGP) (Price et al., 1983), osteocalcin (bone gla-protein, BGP) (Price et al., 1976), both of which are made by bone cells, and protein S (made primarily in the liver but also made by osteogenic cells) (Maillard et al., 1992) (Table V).  The presence of di-carboxylic glutamyl (gla) residues confers calcium-binding properties to these proteins.

MGP is found in many connective tissues and is highly expressed in cartilage.  It appears that the physiological role of MGP is to act as an inhibitor of mineral deposition.  MGP-deficient mice develop calcification in extraskeletal sites such as in the aorta (Luo et al., 1997).  Interestingly, the vascular calcification proceeds via transition of vascular smooth muscle cells into chondrocytes, which subsequently hypertrophy (El-Maadawy et al., 2003).  In humans, mutations in MGP have been also been associated with excessive cartilage calcification (Keutel syndrome, OMIM 245150).

Whereas MGP is broadly expressed, osteocalcin is somewhat bone specific, although messenger RNA (mRNA) has been found in platelets and megakaryocytes (Thiede et al., 1994).  Osteocalcin-deficient mice are reported to have increased bone mineral density compared with normal (Ducy et al., 1996).  In human bone, it is concentrated in osteocytes, and its release may be a signal in the bone-turnover cascade (Kasai et al., 1994).  Osteocalcin measurements in serum have proved valuable as a marker of bone turnover in metabolic disease states.  Interestingly, it has been recently suggested that osteocalcin also acts as a hormone that influences energy metabolism by regulating insulin secretion, beta-cell proliferation, and serum triglyceride (Lee et al., 2007).

These are the first three paragraphs of the chapter Noncollagenous Bone Matrix Proteins in Principles of Bone Biology (3rd ed.) which I found it on the web when I was searching for more info on the biochemical action of menaquinone.

And now, here is my simple explanation of how things work:

The players are the fat-soluble vitamins A, D, and K2;  three special proteins called osteocalcin, matrix gla protein, and protein S;  and an enzyme called vitamin K-dependent carboxylase.

First, vitamin D makes calcium available by allowing its absorption from the intestines into the bloodstream.  This is vital for life and health.  You know that severe vitamin D deficiency is extremely dangerous and develops into the disease that deforms bones called rickets.  Milder forms of vitamin D deficiency are much harder to detect without a blood test, but can and do lead to a huge spectrum of disorders and health problems.  However, without vitamin K2, ample or even just adequate levels of vitamin D will inevitably lead to increased soft tissue calcification.

Vitamins A and D make bone-building cells (osteoblasts) and teeth-building cells (odontoblasts) produce osteocalcin (also known as bone gla protein or BGP) and matrix gla protein (or MGP).  This is key because it is these proteins that will transport the calcium.

Vitamin K2, through the action of the vitamin K-dependent carboxylase enzyme, activates bone and matrix gla proteins by changing their molecular structure which then allows them to bind and transport calcium.

Once activated, bone gla protein brings calcium (and other minerals) into the bones;  and matrix gla protein takes calcium out of the soft tissues like smooth muscle cells of arteries, but also organs, cartilage, skeletal muscles, and skin.  Without this K2-dependent activation, BGP and MGP remain inactive, and the calcium accumulates in soft tissues all over the body.

What completes the act, is that vitamin K2 activates protein S which oversees and helps the immune system clear out the stuff of arterial plaques that remains once the calcium making the plaques structurally stable has been taken out.  And, amazingly, protein S does this without triggering a large inflammatory response.

Even though it is quite straight forward when explained in this way, this understanding of vitamin K2 and its action in the body is really quite recent: in the last 20 years or so.  For one thing, it was only 10 years ago that Chris Masterjohn solved the 60-year old mystery of Weston A. Price’s X-Factor, correctly identifying it for the first time as vitamin K2. (You can read that for yourself here.)  And although some laboratory studies and experiments on vitamin K were done several decades ago, the majority are from the last 10 years (take a look at the references in Masterjohn’s paper.)

We’ll stop here for now.  But we’ll come back to vitamin K2 because there are so many other amazing things it does for our health.

This article was inspired by Dr. Kate Rheaume-Bleue’s book entitled Vitamin K2 and the Calcium Paradox.

Thank you to all our patrons, and in particular Eric Peters, for their continued support. Become a proud sponsor of healthfully and join our patrons today!

Energetics of survival

You wake up, open your eyes. You are surrounded by lush green forest in all directions. There are lots of bees and bumble bees, butterflies and dragonflies, all of them buzzing around the wild flowers and flowering bushes, collecting pollen, sucking nectar, and eating small bugs. There are also birds of all kinds; of kinds and colours you have never seen. Some are flying, frenzied, up and down and all around, some are singing loudly and proudly, some are sitting on branches, watching you, seemingly in just as much amazement to see you there, as you are feeling looking out onto this amazing scene. You have no idea where you are, but you know it’s green, vibrant, and full of life, you know it’s a beautiful place, a wonderful place. Never in your life had you imagined a place like this could still exist in the world.

sentinelIsland

What happened is that you were brought to and dropped off on this island, untouched by people or technology, while you were asleep, after having been sedated in order not to wake up during the trip. You don’t know why, and you don’t know who did this. Fortunately, and you don’t know this yet, but there are no predators on the island. Not only that, but the weather is perfect in that it never gets too hot or too cold, too dry or too wet, and there are enough food resources for you to live on, even if you have to work to find and get what you need to stay strong and healthy. Since you are alone, you don’t have to provide for, or protect anybody other than yourself. What is your first concern?

Most probably, finding a place where you can rest and sleep, sheltered from wind and rain, and safeguarded from possible dangers or annoyances that could prevent you from getting a restful sleep. You might eventually build yourself a more permanent house, but for now you need to find a suitable cave-like place, get some branches to close the face of it, and some tall grasses and leaves to make the ground soft enough to sleep on. You get to it.

You find a place, find plenty of branches and tall grasses, get your shelter organised. And although this was as easy as you could have hoped for, it has taken you half a day, and it is now early afternoon. What’s your main concern now? Food, of course: you’re hungry! You set off in search of things to eat. You walk half an hour or so, and the first thing you find is a little patch of what looks like wild spinach. So, you pick and eat a couple of small bunches of it. It’s not bad: it tastes just like spinach, even if the leaves are smaller, and a little tougher than you’re used to. However, they’re just green leaves: you’ve had enough of them, but you’re still just as hungry as you were.

You keep walking, looking all around for edible things. Another half an hour later, or thereabouts, you notice a small bush with barely visible blueberries scattered sparsely on it. You walk up to it, and start picking and eating. You’re lucky that it’s summer. The berries are good, but they are tiny, and so sour; you had no idea wild blueberries were so small, and this sour. After about 15 minutes of carefully picking through bush, you’ve eaten the three handfuls of blueberries that were on it. But guess what: you’re still really hungry. Maybe a little less than when you set off about an hour ago, but hardly at all. Think about it: a couple of bunches of small spinach leaves, and a few handfuls of wild blueberries. That’s not much. So, you set off again.

Two hours later, you are famished, and you’re still walking around looking for food. You notice a little tree that looks like it might have something on its branches. You get closer, and you’re so happy when you realise that they are hazelnuts. There’s quite a lot, even if the tree is still quite small. Unfortunately, most of them are green. In any case, you start picking all the ones that look ripe, or at least ripe enough to be picked. You’re really happy to have stumbled upon that valuable find. You manage to collect about twenty five of them that are either ready or just about to be. You find a good stone for the purpose, and carefully break the shell of each hazelnut, one by one, cautious not to crush the nut inside. You end up with lovely, freshly shelled hazelnuts from which you peel the soft skin to reveal the soft milky white nut underneath. There are enough of them to fill your cupped hands held together. You eat them, enjoying every bite, every moment of chewing, every moment of swallowing. Even if you consciously made yourself eat them slowly and mindfully, the pleasure lasted just under a quarter of an hour. Nonetheless, for the first time today, you feel your hunger and appetite have been appeased.

It is now quite late in the afternoon, and you are feeling tired from a whole day’s walking and looking for things to eat, but you are now really thirsty: you haven’t drank in almost a day. You head back to your shelter, and about half way there, stop at a spring you noticed while walking past it in the morning. You drink to quench your thirst: probably more than a litre of the cold, fresh spring water. That feels so good. Now you feel totally full: full of hazelnuts and water. You are totally ready for bed, exhausted after such a tiring day. It’s not even 20:00 but you are bushed. You go back to the cave, and settle in for the night.

The next morning you get up, and immediately, based on yesterday’s experience, realise that your main concern is to find and get enough food to feel nourished. You figure that the easiest way is to try to catch some fish. At least if you get even just one, that will be enough for the day. You need more than leaves and berries, and that the hazelnuts will need more time to ripen. You walk to the coast. That takes you about an hour. You construct a very simple underwater trap a few meters in from the shoreline, by placing stones in a circular fashion that creates a kind of rounded wall with an opening on one side, in a way that the fish will be able to swim in, but will not be able to continue on their way out to the other side, and will thus get stuck in the shallow underwater pool. That way, you will be able to either grab the fish with your hands directly and throw it out onto the shore, or be able to harpoon it with a sharp-ended pole you would have made. Either way, your hope is that at least one fish of good enough size will get stuck in your trap. You set that up and walk off to continue scouting out the island for other food and water springs.

It’s a beautifully sunny day, and you are thoroughly enjoying walking slowly, looking around, exploring the island, discovering the landscape. A couple of hours later, you find a little valley along which runs a small stream. As you walk along the bank, a few minutes later, you come across a patch of blackberry bushes. That’s fantastic! It’s not yet peak season, but there are already a some ripe ones on the south-facing side of the thorny bushes. You haven’t had any breakfast, obviously, since you didn’t have anything you could eat, and so, you eat all the berries you can find that are ripe enough to be picked. After nearly an hour of delicately and carefully looking and picking while trying to not get all scratched up by the thorns sticking out everywhere in all directions from the long and skinny branches of the blackberry bushes, you have eaten a few handful of berries, but your arms and legs are nevertheless itchy from all the small scratches you did get; it’s just impossible not to get scratched picking blackberries. And although you’ve barely eaten the equivalent of a large bowlful of blackberries, and although you feel a barely noticeable difference in the feeling of your empty stomach, you’ve had enough of this precarious and thorny picking. You decide to go back to check on your fish trap.

You beam-line to the place you set up the trap, and make it back in a little over an hour. You are so excited when you see that there is a large fish swimming in circles in the shallow pool of your trap that you can hardly contain your excitement, but you need to be very careful with your manoeuvres to not let it slip out and swim away. You grab the harpoon you made and left on the shoreline, go up to it very slowly to avoid making waves in the shallow waters, circling around from the north side to make sure you don’t cast a shadow on the water over the trap, and with great care and attention, holding your breath both from the excitement of actually catching the fish, and the anxiety of failing to do so, you bring down the harpoon and spear the fish solidly right on the end of the sharpened stick. Fantastic! Brilliant! You never imagined how amazing and empowering it would feel: you’ve never before had to catch a fish or anything else in order to feed yourself.

You make a fire, grill the fish, and finally eat it with immense pleasure and satisfaction. You feel great, really great: totally full and totally content. It’s now late in the afternoon, but you’re ready to sleep. So, you go back to the cave, and sleep on a full stomach, calm and at ease, a wonderfully restful sleep.

When you wake up the next morning, you’re surprised by the fact that you don’t feel hungry. You’re really thirsty, but you’re not hungry. You haven’t felt like this in days. You get up, walk to the closest water spring, and drink. You drink probably the equivalent of a litre and a half, and you feel totally full. You set off and spend the day walking around, exploring and getting more familiar with the island. It’s not until the afternoon that you start to feel hungry again. So, you just go back to the beach where your trap is. You walk up to it, and man! Holy cow! There are three fishes in it! Being even more cautious then you were yesterday, you manage to catch two. The third one escapes, but this is really good anyway: you have two fish instead of just one.

Again today, like you did yesterday, you make a fire and grill the fish. But you only grill one of them to eat today. The other one, you wrap in a large banana type leaf, and place in the hot ashes on the side of the fire. You grill your fish to perfection, and eat it with as much joy and satisfaction as you did yesterday, taking your time, eating all the little bits of flesh and skin, sucking clean every fish bone. It’s so good! A couple of hours have passed now, since you started grilling, and the second fish wrapped in the leaf has now been steamed in its own moisture, making it easy for you to separate all the edible parts. Putting these aside on a small wooden platter you’ve made by weaving together thin branches, leaving enough space between them to allow air to flow through. After that you make a little structure that you can place over the fire, and on which you can set the ventilated weaved branch plate with the fish, letting it sit there, a foot or so above the ashes, making sure to maintain the coals hot, and putting dried leaves and pine needles to make smoke.

This is a slow process, and you want to dry the fish, not just smoke it lightly, because you want to be able to keep it without it spoiling. You end up doing this all afternoon and well into the night. Eventually, you fall asleep on the beach, next to the smouldering fire, and by the time morning comes, the fish is dried: you can keep it, and it won’t go bad. You’re exhausted. You hardly slept all night. You take the smoke-dried fish with you back to the cave, and go to sleep for a few hours.

When you wake up, it’s already mid afternoon. As the day before, you go drink, and then go back to the fish trap to assess the catch, but today there is nothing: not a single fish. Well, no problem, you think, there’s the smoke-dried fish back at the cave that you can have for supper. You decide to make a detour and hike back to the blackberry patch on your way back. It’s going to take some time, but you already have your plan for supper, so you enjoy the one hour walk to the valley with the blackberries. You pick and eat berries for a while, maybe a little under an hour, and then make your way back home to the cave. You take out your smoked fish, but eat only half of it. You never know if there’s going to be a catch tomorrow, and your don’t want to be left without having anything to eat for dinner the next day. Anyway, half the fish is enough to make you feel full and satisfied from your meal. You go to sleep.

When you wake up in the morning, you don’t get up right away. You lie back, and reflect on the last few days. You’ve been on the island for just three days, and in this short period of time you have understood, without having had to think about it even for even a second, the energetics of survival. You have understood, first of all, that there is no way at all that anyone living in the wild could survive for an extended time on plant foods alone. Second, you have understood that the value of foods, in terms of energetics, is measured in the amount of calories, and of the feeling of satiety or fullness they provide. Therefore, the richer in fat and protein the food, the more valuable it is: animals and animal foods come first; fat and protein-rich plant foods like nuts and oily seeds (sunflower, sesame) come second; and all other foods like berries, greens, and other edible fruits and vegetables come third. It’s plain and simple, and there’s no way around these two basic conclusions.

In addition to that, it strikes you that the circumstances in which you have landed—a place with a perfect climate, with no predators, at the best time of the year for finding and harvesting plant foods, and with an amazingly easy access to enough fish to feed yourself—really couldn’t be any better. They must have been far worse for almost every individual in all of our ancestral lineages, no matter where they might have been on the globe.

And now, considering that every human being on the planet today is a descendant of a tribe of homo sapiens that, it is believed, lived on the south western coast of Africa, ate mostly crustaceans and fish, developed larger and more versatile brains (almost surely due to their diet), and were the first ones to develop advanced language skills, which gave them a greatly increased power of communication, conceptualisation, and abstraction. Considering that it is these people that, beginning between 100 and 70 thousand years ago, started migrating northward and eastward first through and then out of Africa, reaching Polynesia and Australia around 50 thousand years ago, Europe and Asia most likely in several waves between 70 and 35 thousand years ago, their descents eventually reaching North America 12 to 13 thousand years ago, near the end of the last ice age. And considering that this last ice age lasted 100 millennia—that’s one hundred thousand years—during which every hominid on the globe, other than those living in equatorial regions, and this includes all homo sapiens and all neanderthals, must have had to live almost exclusively on animals and animal-derived foods, not just for a while, but several tens of thousands of years.

Can this even be imagined from the perspective of someone who lives approximately 80 years, but who keeps in memory a sense of time that spans much less than that? Your parents were born around 20-30 years before you. Their parents were born 20-30 years before them. Your great grand-parents, another 20-30 years before that. And do you know anything about your great grand-parents, other than possibly having seen a few pictures and heard a few anecdotes about them told by your parents or grand-parents? And this is just a period of time spanning 60 to 90 years. Think of what this means: not one hundred, not two or three hundred, not five hundred, not even one thousand years, but ten, twenty, thirty, fifty thousand years eating basically only animals, without ever knowing what it’s like to eat anything else, a whole lifelong, generation after generation, hundreds of generations after hundreds of generations.

What do you think this implies for us now? What does it say about both the essential and most important macro and micro nutrients our bodies and brains need? What our bodies and brains, these incredibly complex living systems, refined over millennia upon millennia in every aspect of their coarsest physical and mechanical, and their most subtle biochemical, hormonal and neurological functions, actually need to function properly? What does it say about what we, as human beings, have evolved over these vast periods of time being dependent upon to be healthy, survive and reproduce?

If you think this article could be useful to others, please ‘Like’ and ‘Share’ it.