Ten years of carbohydrate restriction: here’s why

It was almost exactly ten years ago, in March 2008, that I read Ron Rosedale’s Insulin and Its Metabolic Effects.  I now know that this is surely the one thing I’ve read that has had the most impact on my life. Rosedale’s presentation was a total revelation to me:  I had never read anything about insulin before, and his explanations of the biochemical and physiological functions and effects of insulin on the body all made perfect sense in and of themselves, but also appealed to my appreciation and reliance on complete explanations that are consistent with the facts we can observe about them.  I eliminated insulin-stimulating carbohydrates from my diet overnight.  That was that.

We were then still vegetarian at home.  Hence, the family breakfast, following Mercola’s example, became smoothies made of raw, local, pastured eggs with berries and stevia.  That lasted quite a while.  I always travelled with my hand blender and stevia, brought eggs if it was for short trip, or scouted out places to get good ones when the trip was longer.  Throughout a summer trip along the American west coast, I made our raw egg smoothies every day, in hotel rooms and campgrounds.

At one point, I discovered coconut oil and coconut milk.  The breakfast smoothies evolved to being made of eggs and coconut milk with berries, and eventually only coconut milk, berries and stevia.  This period lasted several years until we moved on to cold pressed green juice with coconut milk; it was two thirds juice and one third milk.  We also did this for several years until about two years ago when our son left for university, at which point we dropped having breakfast entirely to allow for a daily overnight fasting period of about 16 hours from after dinner to lunchtime.

Food intolerance testing in 2014 showed that all three of us were intolerant to eggs; we removed them from our diet.  My wife and I had the most and our son the least intolerances; this was not surprising given we were a lot older than him.  It also showed my wife and I were intolerant to most dairy products; we removed them from our diet.  We were also intolerant to grains: both highly intolerant to wheat, and then I, in addition, somewhat less so to barley, malt, and quinoa—we ate quinoa almost daily for years as our son was growing up.  He, although not intolerant to dairy or wheat, was intolerant to almonds, pistachios, and brazil nuts. (Here are my test results, if you’re interested.)

Imagine: vegetarian for 20 years, with a diet during these two decades from teenage hood to middle adult hood consisting primarily of wheat and grain products, beans, cheese and yogurt, eggs and nuts.  Of course, also plenty of sweet fruit, starchy vegetables, and salads, as with is true for most vegetarians.  But the bulk, both in volume and in calories, was from grain products, cheese, and eggs.  The shocker for me was that the food intolerance test painted the profile of a meat-eater:  if you remove grains, dairy, and eggs, what is left is animal flesh, vegetables and fruits.

If now, in addition, you remove (most) fruit and starchy vegetables (most of the time) to avoid insulin-stimulating carbohydrates, all that is left is animal flesh and green vegetables.  That’s just how it is.  We also used to eat almonds—the richest in magnesium, and brazil nuts—the richest in selenium, almost daily.  But because our son was intolerant to both and I was intolerant to brazil nuts, we removed those from our diet as well.

IMG_2275

These were all food intolerances; they were not allergies.  But they were nonetheless intolerances, some stronger, some weaker.  If you are concerned about health in the sense of being in the best state of health you can, then obviously you must not eat foods to which you are intolerant.  Otherwise, your immune system is triggered each time the offending molecules in those foods enter the gut and bloodstream.  This gradually but inevitably makes the intolerance greater, your system weaker, and body sicker.

Over these ten years, I’ve read quite a few books, articles, blog posts, and detailed discussions about health-related matters.  I’ve also experimented quite a bit with my own diet, and learned a great deal from that.  The other thing I’ve done a lot of, is have conversations with people about diet, nutrition, diseases, and the metabolic effects of different foods and of insulin.

My position—which has only grown stronger with time—is that the first and most fundamental pillar of optimal health is having a metabolism that runs on fat.  And this means keeping insulin levels low by restricting sugars and starches.  Not necessarily always, but most of the time, as in almost always.

The first question that people ask when they find out is why: Why do you not eat bread? Bread has forever been essential to humans.  I simply couldn’t live without bread.  Or, why don’t you eat potatoes, or rice, or pasta?  They’re so good!  I simply couldn’t live without potatoes and pasta.  And, you don’t even eat fruit? But isn’t fruit full of vitamins and minerals?

The way I have answered has depended on a lot of things: the setting, the atmosphere, the company, the time available, but most importantly on the person.  Some people are actually interested to find out, and maybe even learn something.  Most, however, are not.  Consequently, I have made the answer shorter and shorter over the years.  Now, I even sometimes say: well, just because, and smile.

Maybe you have wondered, or even still wonder why.  Maybe although you’ve read so many times in my writings that I think everyone seeking to improve their health should restrict insulin-stimulating carbohydrates, you still wonder what the main reason is, what the most fundamental reason for which I don’t eat sugars and starches.  Here’s why:

It’s not primarily because carbs and insulin make us fat by promoting storage and preventing the release of energy from the ever larger reserves of fat in our body: I am lean and always have been.

It’s not primarily because carbs and insulin lead to insulin resistance, metabolic syndrome, and diabetes; inflammation, dyslipidemia, water retention, and high blood pressure; kidney dysfunction, pancreatic dysfunction, and liver dysfunction: my fasting glucose, insulin, and triglycerides have been around 85 mg, 3 milli units, and 40 mg per dl for years; my blood pressure is 110/70 mg Hg, glomerular filtration rate is high, and all pancreatic and liver markers are optimal.

It’s not primarily because carbs and insulin promote cancer growth since cancer cells fuel their activity and rapid reproduction by developing some 10 times the number of insulin receptors as normal cells to capture all the glucose they can, fermenting it without oxygen to produce a little energy and tons of lactic acid, further acidifying the anaerobic environment in which they thrive.  My insulin levels are always low, and my metabolism has been running on fat in a highly oxygenated alkaline environment for a decade.

It’s not primarily because carbs and insulin promote atherosclerosis, heart disease and stroke by triggering hundreds of inflammatory pathways that compound into chronic inflammation and damage to the blood vessels, which then leads to plaque formation and accumulation, restriction of blood flow, and eventually to heart attack and stroke: my sedimentation rate, interleukin-6, C-reactive protein, and Apolipoprotein-A are all very low.

It’s not primarily because carbs and insulin promote the deterioration of the brain, dementia, and Alzheimer’s, both through the damage to blood vessels around and in the brain itself, and insulin resistance of brain cells, which together lead to restricted blood flow, energy and nutrient deficiency, and accumulation of damaging reactive oxygen species and toxins in the cells, and, unsurprisingly, eventually to dysfunction that just grows in time: because my metabolism runs on fat, this means that my brain runs on ketones, and is therefore free of excessive insulin or glucose exposure.

It isn’t primarily for any of these reasons, which, I believe, are each sufficient to motivate avoiding sugars and starches in order to keep tissue exposure to glucose and insulin as low as possible.

My main reason is that, at the cellular level, in its action on the nucleus and on gene expression, insulin is the primary regulator of the rate of ageing.

Insulin is essential for life: without insulin, cells starve and die. It is essential for growth: without insulin cells don’t reproduce, and there can be no growth.  This is why at that most fundamental level, insulin regulate growth in immature individuals.  But in mature individuals, once we have stopped growing, insulin is the primary regulator of the rate of ageing, both in terms of its effect in suppressing the production of antioxidants and cleansing and repair mechanisms within the cell, but also in stimulating cellular reproduction. And the more reproduction cycles, the greater accumulation of DNA transcription defects, the faster the shortening of telomeres, and the faster the ageing.

This is a fundamental fact that appears to be true for all living organisms.  It is as true for yeasts and worms, as it is for mice and rats, as it is for dogs and humans.  And the rate of ageing is the rate of degeneration, of growing dysfunction, of more damage and less repair, of lower metabolic efficiency and less energy, of increased cell death and senescence.  I personally wish to be as healthy, energetic, strong, and sharp as possible for as long as possible.  This is why I personally avoid sugars and starches.  This is why I personally restrict insulin-stimulating carbohydrates.

 

Become a proud sponsor of healthfully! Join our patrons today!

Living healthy to 160 – insulin and the genetics of longevity

Of the most remarkable discoveries of the last 15 years, discoveries that might well turn out to be the most remarkable of the 21st century, are those of the telomere—a little tail at the end of our DNA whose length tells us how long we have left to live, and of the enzyme telomerase—the specialised protein whose job it is to try to repair the telomeres so that the cells (and we) can live longer and, from an evolutionary perspective, increase the probability that we’ll have more babies. This and other research into the biology of ageing and the details relating to the transcription of DNA, and the expression or suppression of genes is truly amazingly fascinating. I will turn to this in time, but think it would be jumping the gun to do so now.

What is definitely one of the most remarkable discoveries of the 20th century pertains to the hormone insulin. I am not, however, here referring to the fact that its discovery revolutionised medicine by allowing the saving of countless diabetics from highly premature and painful deaths, usually preceded by torturous amputations of their feet or legs and all the of the horror and misery brought on by these seemingly barbaric and radically extreme measures. (And don’t for one second imagine that such amputations are a thing of the past: I know for a fact—heard directly from the mouth of a practicing orthopaedic surgeon—that amputations are the reality of his everyday, performing sometimes two in a single day.) I’m not either, at least this time, talking about insulin as the master metabolic hormone that regulates the storage into cells of nutrients circulating in the bloodstream. What I am referring to as one of the 20th century’s greatest discoveries in regards to insulin is that of its role in regulating the rate of ageing.

Something that is almost as remarkable is that we hardly ever hear or read about this. For me, that’s really strange. But whatever, I’m not going to hypothesise and speculate to come up with an explanation for why this is. Insulin as regulator of the rate of ageing is what we’ll look at in this article.

Why do mice live two years but bats fifty? Why do rats live three years, but squirrels fifteen. Why do some tortoises live hundreds of years? Why do the smallest dogs, like Chihuahuas, live about twenty years, while the largest, like Great Danes, live five to seven years only? And why do we, humans, live around 80 years, rarely making it to 90, and very rarely to 100 years of age? It is this line of questioning that triggered in the late 80’s and early 90’s a geneticist working in evolutionary biology to hypothesise, for the first time, that ageing could be genetically regulated, at least to a certain extent.

It was the discovery and subsequent realisation in evolutionary biology at that time, that a large number of fundamental cellular processes and mechanisms regulated by a variety of genetic expressions were common to widely different organisms. The realisation was that because all animal life must necessarily share a common ancestor, it is not only logical that the most fundamental functions of cells and especially of how genes express themselves under the influence of hormones essential for life could be the same, but that it should be, to a great extent, expected to be that way. And even though these considerations may seem obvious in retrospect, the fact is that there was only one person with this knowledge, asking these questions, and having the means to do something about seeking an answer to some. Cynthia Kenyon, Professor at UCSF, was this person.

The subject was quick to choose: the tiny worm that Kenyon had already been studying for years, C. elegans, was perfect because it is simple but nonetheless a complex animal, and because it has a short natural lifespan of about 30 days. The first step was clearly defined: find at least one long-lived individual. What seems very surprising from our current vantage point it that she couldn’t readily find one: she couldn’t convince anyone to join with her in this endeavour. Everyone was at that time convinced that ageing was something that just happened: things just wore out and deteriorated with use and with time; nothing to do with genes. But how could this be if different species—some very physically similar—are witnessed to have such widely different lifespans? It just had to be genetic at some level, Kenyon thought. Eventually, after a few years of asking around and searching, she found a young PhD student that was up to it, and set out to find a long-lived mutant.

A number of months down the road a long-lived mutant was found and immediately identified as a ‘DAF-2 mutant’. This mutation made the DAF-2 gene—a gene responsible for the function of two kinds of hormone receptors on a cell’s membrane—less active. The next step was to artificially create a population of DAF-2 mutants and see how long they live, statistically speaking, compared to normal C. elegans. It was found that the genetically ‘damaged’ worms, the ones for which they had turned down the expression of the DAF-2 gene, lived twice as long: starting with exactly the same number of worms, it took 70 days for the last one of the mutants to die compared to 30 days in the normal population.

But an additional observation was made: the curve that traced the fraction of worms remaining was stretched by a factor of two from about the start of adulthood for the mutants. They had the same relatively short childhood but then for the remainder of their lives, for every day in the life of the normal worms, the mutants would live two days. The most impressive was that they were really half their chronologically equally aged cousins in all respects: external appearance, level of activity and reproduction.

To make you appreciate this point as much as you should, this observation with respect to not just the lifespan but notably the healthspan of C. elegans would translate in human terms in someone being 80 years old but looking and acting like a 40 year old in the sense that nobody could tell that they were not 40, let alone 80 years old. Just like Aragon in the The Lord of the Rings. This person would be like a 40 year old at 80, like a 60 year old at 120, and like an 80 year old person coming to the end of their life by the time they were 160! Can you even imagine that? Hard isn’t it. But this is exactly what Kenyon and her team were looking at in these experiments with these little worms.

Now they wanted to understand the effect of the DAF-2 gene, or rather, understand the effect of suppressing its expression in the DNA of each cell’s nucleus at different developmental stages. If it was turned off completely, the worms would die: clearly, DAF-2 expression, at least in C. elegans, is essential for life. If it was suppressed immediately after birth (hatching), the little worms would enter the Dauer state in which they don’t eat, don’t grow, don’t reproduce, and basically don’t move either: they just sit and wait. Wait for what? For better times!

This Dauer state is a remarkable evolutionary adaptation seem in some species that allows the individual to survive during periods of severe environmental stress such as lack of food or water, but also high UV radiation or chemical exposure, for example, for long periods of time with respect to their normal lifespan in a very efficient kind of metabolic, physiological and reproductive hibernation. What’s really cool is that inducing worms out of the Dauer state, no matter how long they’ve been in it, they begin to live normally again, moving and eating, but also reproducing. So, in the Dauer state C. elegans literally stops ageing altogether and waits, suspending metabolic activities and physiological functions until conditions for reproduction and life become adequate once again.

celegansfasting

Taken from Worms live longer when they stop eating  (http://www.bbc.co.uk/nature/2790633)

If DAF-2 expression was turned back up to normal, then they moved out of Dauer and resumed their development stages equivalent to childhood, teenage-hood, and then adulthood, but didn’t live any longer as adults. Finally, suppressing DAF-2 expression at the onset of adulthood resulted in the extended lifespan as originally observed. The conclusion was therefore clear: DAF-2 expression is essential for life and necessary for normal and healthy growth and development in immature individuals from birth until they reach maturity, and suppressing DAF-2 expression was only effective at extending both lifespan and healthspan in mature individuals.

Going further, they now wanted to understand how DAF-2 suppression actually worked to extent healthspan: what were the actual mechanisms that made the worms live longer when DAF-2 expression was turned down. For this, Kenyon’s team needed to look at all of C. elegans’s 20000 genes and figure out how they affect each other. (Note that this is also more or less how many genes we have, but C. elegans has only 3 chromosomes and is also hermaphrodite.) The sequencing of the worm’s genome was done in 1998, and what was found after analysis was very interesting:

The DAF-2 gene activates a phosphorylation chain that attaches phosphate groups onto the DAF-16 transcription factor. In normal individuals the DAF-2 gene is expressed normally, the phosphorylation chain works unimpeded, and the DAF-16 transcription factor is inactivated. In the mutants, the DAF-2 gene expression is suppressed, and as a consequence, the DAF-16 transcription factor is not inactivated and instead accumulates in the nucleus. There, DAF-16 encodes what Kenyon’s team showed to be the genetic key to health and longevity they were looking for from the start of this now decade long pursuit: the FOXO gene.

What does FOXO do? It promotes the expression of other genes, at least four other genes: one responsible for manufacturing antioxidants to neutralise free radicals the largest amount of which are produced by the mitochondria as they make energy for the cell; a second responsible for manufacturing ‘chaperons’ whose role as specialised proteins is to transport other proteins and in particular to bring damaged ones to the cell’s garbage collector and recycling facility to promote the replacement of those damaged proteins by new and well-functioning ones; a third responsible for manufacturing antimicrobial molecules that increase the cell’s resistance to bacterial and viral invaders; and the fourth that improves metabolic functions and in particular fat transport (reduce) and utilisation (increase).

It is these four genetically regulated cellular protection and repair mechanisms, the cumulative combined effects of all these increased expressions of antioxidants, chaperons, antimicrobials and metabolic efficiency—all of them at the cellular level—that allow the lucky DAF-2 suppressed mutants to live twice as long twice as healthy. Remarkable!

Now that all the cards about how the long-lived mutants actually live twice as long as expected under normal conditions are laid on the table, and that there is only one detail I left out of the story up to this point, tell me: can you guess what are the two sister hormones to which the cell’s sensitivity through the activity of its receptors for them are controlled by the DAF-2 gene? It’s a trick question because I told you half the answer in the introduction: The DAF-2 gene encodes the hormone receptors for both insulin and the primary form of insuline-like growth factor IGF-1. Surprised? It isn’t surprising, really. In fact, it all makes perfect sense:

Insulin and IGF-1 promote growth; nutrient absorption and cellular growth and reproduction are essential for life and thus common to all living organisms, including the more primitive of them like yeasts; growth in immature individuals is fundamental for health and for ensuring they reach maturity; but growth in adults, in mature individuals, just means ageing, and the more insulin and IGF-1 there is, the faster the rate of cellular damage and deterioration, the more genetic mutations from errors in transcription, the more pronounced the deterioration of the brain and the heart, of the arteries and the veins, of the muscles, the bones and the joints, and obviously, the faster the rate of ageing. Because what is ageing if it is not the word we use to describe the sum total, the multiple negative consequences, the end result of all of these deteriorations in these vital organs and systems but also everywhere else throughout the organism, all of it starting at the cellular level, in the nucleus of every cell.

About the necessity of insulin for normal growth, you should definitely not think that these observations impliy we should stimulate insulin secretion in the young in order to ensure proper growth. Totally not! The body knows exactly when and how much insulin is needed at any given time. In fact, any additional stimulation of insulin promoted by eating simple and starchy carbs actually deregulates the proper balance of hormones that the body is trying to maintain. This deregulation from a sugar laden diet in children is the very reason for many wide spread health problems in our youth most important of which is childhood obesity and the metabolic and physiological stresses this brings on. So, leave it to mother nature to know how to regulate the concentration of insulin in the bloodstream. Do not disrupt the delicate biochemical balance by ingesting refined carbohydrates: it’s the last thing anyone needs for good health and long life.

The first results were so interesting that several other groups joined in this research into the genetics of ageing. Not as much as one would think, but at least a handful of other groups began to apply and expand the techniques to other species. Unsurprisingly, the same effects, although with different magnitudes, were seen in these very different species, from an evolutionary standpoint: fruit flies and mice. In addition, the connection was made with lifespan-extending experiments using calorie-restriction, which have also been carried out on mice and other animals (we’ll look into this another time). And beyond the work around DAF-2, DAF-16 and FOXO, Kenyon’s group investigated other ways to influence lifespan and found two more.

The first was by disabling some of the little worm’s sensory neurones of which there are very few, making it easy to test and determine the influence they have separately and in combinations. They tested smell and taste neurones, found that disabling some would extend lifespan while disabling others didn’t. They also found that disabling different combinations of smell and taste neurones could have nulling effects. The second was playing with the TOR gene expression. For now, however, we will leave it at that.

As the fact that it is rare and relatively hard to come by this work without actually looking for it, there is something else I find very hard to comprehend. In Kenyon’s various lectures on this work, there is usually a mention of the biotech company she founded called Elixir Pharmaceuticals and how they aim to find one or more drugs that can suppress DAF-2 expression in humans without causing negative side-effects in order to extend lifespan and healthspan as was done in C. elegans with genetic manipulation. That’s fine, and does make sense to a certain extent, especially if we can find not chemical drugs but natural plant-derived compounds that have this effect on us.

The thing that doesn’t make sense and that is hard to understand from the naive perspective of the honest scientist looking for the simplest possible solution to a problem of inferring something we don’t know from information that relates to what we want to know: in this case this mean the simplest way to make the best use of this information and apply what we have learnt from these two and half decades of research in a way that we know would be beneficial in promoting a longer and healthier lifespan in humans without risks through the introduction of foreign substances in our body. Because they haven’t, here I offer my attempt to do this.

We have, thanks to Kenyon and others, understood in great detail how lifespan in complex organisms can be, to a great extent, genetically regulated, and which genes, transcription factors and mechanisms are involved in the process of regulating the rate of ageing in conjunction with the propensity for developing age-related degenerative diseases. In the final analysis, the main players are the DAF-2 gene that tunes up or down the sensitivity of insulin and IGF-1 receptors, the DAF-16 transcription factor that encodes the FOXO gene but is made inactive by the expression of DAF-2, and the star FOXO longevity gene that promotes the expression other genes responsible for stimulating the cell’s most powerful protection and repair mechanisms.

We have, from many decades of research on calorie-restriction and fasting in animals including humans (and which we’ll explore elsewhere), understood that this is an extremely effective way to extent both lifespan and healthspan and basically eliminate the occurrence of age-related degenerative diseases by greatly increase resistance to health disorders of all kinds. Some key observations on calorie-restricted animals include their very low blood levels of sugar, insulin and IGF-1, high metabolic efficiency and ability to utilise fat demonstrated by low blood levels of triglycerides, and their remarkably younger appearance with increased energy and activity levels.

And finally, we have, from more than a century of observations and research, concluded that diabetics, whose condition is characterised by very high levels of blood glucose, insulin and triglycerides, are plagued by a several-fold increase in rates of cancer, stroke, heart disease, kidney disease, arthritis, Alzheimer’s and dementia, basically all the age-related degenerative diseases known to us, and in addition, also a several fold increase in their rate of ageing based on the spectrum of blood markers used for this purpose, their appearance, but also on the length of their telomeres.

Is it not, therefore, obvious from these observations that high blood sugar, high insulin and high triglycerides are hallmarks of accelerated ageing and a propensity for degenerative diseases, while low blood sugar, low insulin and low triglycerides are instead necessarily related to extended lifespan, extended healthspan and increased resistance to all disease conditions including those categorised as degenerative, and this, independently of the actual mechanisms involved?

Is it not, therefore, plausible from these observations that the genetic mechanisms relating to the function of the DAF-2 gene, DAF-16 transcription factor and FOXO gene in conferring to the DAF-2 mutants twice as long a life can, in fact, be activated and enhanced epigenetically by creating an environment in the organism that is conducive to it: simply by keeping blood sugar, insulin and triglycerides as low as possible? In other words, isn’t it plausible from these observations that by manipulating the biochemistry to ensure that blood sugar, insulin and triglycerides are throughout the day and night as low as possible depending on the organisms requirements, that this will actually translate into the activation of the FOXO gene to enhance protection and repair at the cellular level and thus extend lifespan and healthspan?

And what is, not only the easiest and simplest, but also the most effective way to do this? It is to eliminate insulin-stimulating carbohydrates—sugars and starches—from the diet completely. This, within 24-48 hours, will allow sugar levels to drop to a functional minimum. The low blood sugar will allow the pancreas to reduce production and insulin levels to drop bit by bit. Lowered insulin will eventually allow the cells to start using the fat circulating in the blood, and in time, increase in efficiency, thereby dropping triglyceride levels lower and lower.

Why is it you think that Kenyon never mentions this anywhere? Do you think that this has simply not occurred to her? I honestly don’t know. But if there is a single thing to remember it is this: insulin is necessary for life; in the immature individual, insulin regulates growth; in the mature individual, insulin regulates the rate of ageing and the propensity for degenerative diseases. Hence, if you are a mature individual, and by this I mean full grown, and if you want to live long and healthy, the very first thing you need to do is to keep the concentration of insulin circulating in your blood as low as possible. Everything else that we can do to extend healthspan and lifespan is secondary to this.

If you think this article could be useful to others, please ‘Like’ and ‘Share’ it.

Healthy and lucid from childhood to old age

So you’ve been around for 70 years, and you’re still well enough to read this. Have you actually made it past 75, 80 or even 85? This is really great! Through a combination of different factors, various reasons, personal habits and choices, you have made this far.

Maybe because of your genetic makeup: Your parents and grand-parents all lived well into their 80’s or 90’s by following a kind of innate, traditional wisdom based on the understanding that we really are what we eat, in a very real sense, and you’ve done more or less the same, following in their footsteps.

Maybe because you have always been moderate in your eating habits: You’ve never been overweight; you’ve never eaten much sweets or deserts; you’ve never eaten much preserved meats and canned foods; you’ve never drank much alcohol; you’ve never drank sweetened soft drinks, juice or milk—mostly just water, always paying attention not to drink too much coffee or strongly caffeinated tea.

Maybe you have made it this far because you have also been moderately active throughout your life, never exercising too much or too intensely, but always quite regularly: Walking; doing light exercises for your joints (rotations of the arms for your shoulders, stretches for your neck and back, and exercises for your knees); riding a bike a couple times a week in the good season, not getting off the bike but instead riding up those hills; maybe you went skiing a week or two most years; went for long walks or even hikes in the mountains during holidays; or did a little swimming in the sea or in lakes when the occasion presented itself.

The golden middleas my grand-father called it: everything is moderation. And he almost made it to 90 years of age! But no matter what the reason is, it is truly wonderful that you have indeed made it this far. Then again, you might be young or middle aged, but interested—maybe somewhat, maybe highly, but nonetheless interested—in being healthy and lucid for as long as possible, and hopefully well into your old age.

Either way, young or old, you live in this modern world like most of us. You live in a city, you drive a car, you work in an office, you fly or flew often on business trips, maybe even several times per week. You eat meat and fish; bread, potatoes, rice and pasta; fruits and vegetables, all from the supermarket.  And so you have, throughout your life, been continuously exposed to increasing amounts of chemicals, heavy metals and various other toxins in our environment, most of which have been accumulating in your tissues. You live in the modern world like most of us, and so you have taken medication on various occasions during your life: antibiotics a few times, maybe some pain killers, maybe some sleeping pills, maybe simple anti-histamines when you had a cold. Maybe you are and have even been taking medication on a daily basis for some “minor” but “chronic” condition.

You live in this modern world and so you have been told to drink plenty of fluids and that salt is bad and should be avoided. You’ve been told that fat in general, but especially saturated fats and cholesterol, are bad because they cause heart disease: they cause your arteries to clog up with fatty plaques that eventually block them to give you a heart attack. You’ve been told to avoid them as much as you can, and instead to consume polyunsaturated vegetable oils, plenty of whole grains and cereal products, legumes, plenty of fruits and vegetables, and so you have done that: you have decreased or almost eliminated your intake of butter, eggs, fatty cheese, fatty yoghurt, red meat—never ever eating the fatty trimmings, and also of the fatty skin on chicken or fish.

Consequently, you have increased your intake of morning cereal—but only sugar-free whole grain cereal like muesli; increased your intake of bread—but usually whole grain bread; increased your intake of rice—but usually brown rice; increased your intake of pasta—but usually also whole grain pasta; and increased you intake of potatoes—but never fried, only baked, steamed or boiled potatoes.

Maybe your total lipoprotein levels are around 220 or 240 mg/dl, and you have been told that this is too high, and for this reason you have tried to further reduce your fat intake, and are even taking statins or other cholesterol-lowering drugs, every day, just like hundreds of millions of other people in this modern world.

Unfortunately, you have not been told that you should be drinking water; not fluids in general, and that there are many reasons water, ageing and disease are intimately connected—the lack of water, that is. In addition to that, you have not been told that it is not enough to drink some water sometimes: it is essential to drink water before meals. Unfortunately, you have not been told that sodium is one of the most important minerals for health: why else would the kidneys, without which we cannot live for more than a few days, go to such great lengths to prevent its excretion in the urine, and keep it in the blood if it wasn’t? But even more unfortunately, you have not been told that minerals in general, are essential for health, and that unrefined sea salt contains all naturally occurring trace minerals is proportions that closely match those of several of our bodily fluids. And that furthermore, proper bodily function depends intimately on the balance of the minerals available, and that our salt-phobic and calcium-phillic society has led to most of us becoming completely over-calcified while growing more and more deficient in the rest of the trace minerals, and in particular magnesium. The link between generalised magnesium deficiency and minerals, ageing and disease are now everywhere painfully obvious.

Unfortunately—and indeed very sadly—you have not been told that cholesterol is absolutely vital for life and good health: that it forms the membrane of every single cell in your body and in that of every animal, that your entire nervous system and especially your brain are built using cholesterol and depend intimately on the availability of plenty of cholesterol, that your hormonal system relies completely on cholesterol for building hormones, and that your best defences against infectious and inflammatory pathogens are in fact the lipoproteins carrying around the precious cholesterol throughout your body. You have not been told that cholesterol is so important that it is manufactured continuously by our liver to keep up with the body’s needs, and that therefore, the cholesterol we eat does not in any ways raise lipoprotein concentrations. You have not been told that in addition to cholesterol, fat is also essential for building hormones, essential for absorbing minerals from the intestines into our bloodstream, essential for the binding of these minerals into the bones and teeth, essential for energy production in every cell of our body.

Furthermore, you have not been told that saturated fats like those found in animal products and coconut oil are molecularly stable, whereas unsaturated and particularly polyunsaturated oils such as those that make up all vegetable oils are molecularly unstable, some more than others, for the double bonds between carbon atoms in the chain that forms the fat molecule are weak and readily broken to permit some other unstable molecule seeking a free electron to attach in order to make the final molecular configuration stable. But that those unstable compounds are actually scavenging around for any electron to bind to, and unfortunately most of the time if not always, these free-radicals will attach themselves to healthy tissue without proper enzymatic action to guide them in the proper place and position, thus damaging our tissues.

In fact, you have not been told that all large studies that have been conducted to evaluate the “health-promoting” properties of polyunsaturated fats have not only failed to do so, but instead have shown that the more polyunsaturated oils we consume, the more atherosclerotic plaques develop in our arteries, and therefore the more likely we are to suffer a heart attack or stroke. And that on the contrary, the more saturated fats we consume, the less plaques we have, and consequently, the less likely we are to have a heart attack or a stroke (see any of the books about cholesterol in Further readings).

You have not been told, that for millions of years our species has evolved consuming most of its calories in the form of saturated fats from meat and animal products—in some cases exclusively from these, from coconut and palm oil (where these grow), and to a much lesser extent from polyunsaturated fats, and this only in whole foods such as fish, nuts and seeds—never concentrated into vegetable oils.

Unfortunately—and indeed very sadly—you have not been told that we were never meant to eat simple or starchy carbohydrates: that eating such carbohydrates always triggers the pancreas to secrete insulin in order to clear the bloodstream of the damaging glucose in circulation, that chronically elevated glucose levels lead to chronically elevated insulin levels that in turn lead to insulin resistance—first in our muscles, then in our liver, and finally in our fat cells—which leads to type II diabetes, to heart disease from the buildup of plaque in the coronary arteries and vessels, and to Alzheimer’s and cognitive degradation from the buildup of plaque in the cerebral arteries and vessels.

Unfortunately—and indeed very sadly—you have not been told and have not considered that all the multitude of chemicals and heavy metals that we are exposed to in the medications we take, in the air we breathe, in the water we drink, in the food we eat, in the soaps and shampoos we use, and in the household products we employ to keep our house sparkling clean and bacteria-free, accumulate in our bodies. They accumulate in our fat cells, in our tissues, in our organs, in our brains. They burden, disrupt and damage our digestive system, our immune system, our hormonal system, our organs, tissues and cells. Sometimes they reach such concentrations that we become gravely ill, but none of the doctors we visit in seeking a solution and relief understand why. Most often, however, we don’t get gravely ill but instead start developing different kinds of little problems: we get colds more often and take longer to recover, we get mild but regular digestive upsets that we can’t explain and that seem to get worse with time, we get headaches and have trouble sleeping, we feel depressed, tired, alone, helpless, not acutely but enough to disturb us enough that we notice it.

Finally, and maybe most importantly, you have not been told how truly essential vitamin B12 really is, but how, for a variety of different reasons, blood concentrations B12 decrease with age, and eventually dwindle to very low levels. That B12 is essential most crucially to preserve the myelin sheath that covers all of our nerves healthy, and thus crucially important for everything that takes place throughout the nervous system, which means, everything in the body and brain. Levels of B12 should never go below 450 pg/ml, and ideally should be maintained at 800 pg/ml throughout life, from childhood to old age hood.

Can we do anything about all this?

The most fundamental point to understand is that everything about your health depends on the state of health of your digestive system. All absorption of nutrients and elimination of waste happens in the digestive system. Since our health depends on proper absorption and efficient elimination, the digestive system should be our first as well as our main concern.

The first step is to rebuild and establish a healthy intestinal flora of beneficial bacteria (breakdown and absorption), and at the same time begin to detoxify the body and clean out the intestines (elimination). This is done by taking high quality probiotics to supply beneficial bacteria on a daily basis, high quality chlorella to both supply a lot of micronutrients and pull out heavy metals, and water-soluble fibre like psyllium husks to clean out the intestines by pushing out toxins and waste products. If you are not already taking these, read Probiotics, chlorella and psyllium husks.

The second step is by far the most important, and in fact, crucial dietary change necessary to achieve optimal metabolic health. It is to eliminate simple and starchy carbohydrates from you diet, and replace them with more raw vegetables—especially green and leafy salads and colourful vegetables such as red and yellow peppers, more nuts and seeds—especially raw and soaked, more good and efficiently absorbed protein—especially eggs, fish and raw cheeses, and much more saturated fats—especially coconut oil (at least 3 tablespoons per day) and butter. Doing this is  essential for the systemic detoxification, rebuilding and then maintaining a healthy digestive system. Everything should be organic: you obviously don’t want to be adding to your toxic load while trying to detoxify.

And the third step is to supplement our now-excellent, health-promoting diet with a few essential and very important nutrients that are, for most of us, difficult to obtain. The only such supplements that I believe to be essential, and that my family and I take daily, are: Vitamin B12 and vitamin D3—the most important supplements to take for overall health, but in which we are almost all deficient; Krill oil—a high-quality, animal-based omega-3 fat with its own natural anti-oxidants, highly absorbable, and particularly important for proper brain function; Ubiquinol—the reduced and thus useable form of coenzyme Q10, critical for cellular energy production, and a powerful lipid-soluble anti-oxidant that protects our cells from oxidative damage, but both of whose synthesis as CoQ10 and conversion from CoQ10 to ubiquinol drop dramatically after about age 30-40; Vitamin K2—essential for healthy bones but very hard to get other than from fermented foods, which we typically eat little of.

In addition to these, we usually always take Astaxanthin and turmeric—very powerful antioxidants with amazing general and specific anti-ageing health benefits, and also sometimes take a whole-foods-multi—basically dehydrated vegetables and berries made into a powder and compressed into a pill for extra micronutrients. (You can read about all of these supplements on Wikipedia or any other page you will find by doing an internet search.)

I tend to buy our supplements from Dr Joseph Mercola, (whose website also provides a lot of info about these and other supplements, as well as about a multitude of other health-related issues and conditions), because I trust that his are among if not the best on the market: there’s really no point in buying cheap supplements at the pharmacy, and risking doing yourself more harm than good, as would happen with a rancid omega-3 supplement, or a synthetic Vitamin D, for example.

Staying healthy and lucid is, in reality, quite easy and simple. Unfortunately, most of us, including, and maybe especially our medical doctors, just don’t know how. And so, medical diagnostic and high-tech treatment technologies continue to improve and develop, and medical expenditures continue to rise throughout the modern world, but we are sicker than ever: more obesity, more diabetes, more strokes, more heart attacks, more cancers, more Alzheimer’s, more leaky guts, more ulcers, more liver failures, more kidney failures, and on and on. There is more disease, more pain, more suffering and more premature deaths. And all of it is completely unnecessary and avoidable by such simple and inexpensive means as those outlined herein. The only critical point is that only you can do it; nobody else can do it for you.

We were never meant to eat simple or starchy carbohydrates

The transition between hunting-gathering and farming took place over a period of about 1000 years between 11000 and 10000 years ago in the Fertile Crescent, a crescent-like shape of land that stretches across parts of Israel, Lebanon, Jordan, Syria, Iran and Iraq. The first people to settle were hunter-gatherers that built villages in places they found provided enough food to sustain them without having to move around. At first, these were “seasonal” villages located in different areas, to which they returned in a seasonal cycle. Finding ways to store the grain from the large seeded grasses like barley and emmer wheat growing wild but in large quantities, allowed them to settle permanently. This most likely led to a rapid growth of the population, that was matched with a proportionally rapid growth in the demand for food. The response was the development of agriculture.

The gradual decimation of the wild game over the course of about 2000 years led to the domestication of the most easily domesticable, large mammals to inhabit the region, the sheep, goat and pig, all about 8000 years ago, followed by the cow about 6000 years ago. It is very interesting and important to point out, from an anthropological point of view, that the Fertile Crescent—the seat of civilisation—is the region in the world where there were the greatest number of large-seeded grasses, as well as the greatest number of large, easily domesticable animals, by far.

The cultivation of cereal crops allowed our ancestors, some 10000 years ago, to have, for the first time in our evolutionary history, enough spare time to develop tools and technologies, as well as arts and music. For the first time in evolutionary history, a handful of people could sow, tend to, and harvest enough cereal grain to feed hundreds or even thousands of people who were, therefore, free to do a multitude of other things. Without agriculture and this shift from the hunter-gatherer lifestyle of spending most of our waking hours hunting and rummaging around looking for food, we would not have developed much of anything because we simply never would have had the time to do so.

Now, although it is well known to most anthropologists, it is not a well appreciated fact that the cultivation and eating of cereal crops as an important source of calories, is possibly the most negatively impacting evolutionary mistake to have been made in regards to the health and robustness of our species as a whole. There was, indeed, plenty of free time, and we did develop technologies extremely quickly considering how slowly things had changed before then. But the price to pay was high.

Within as little as one or two generations, our powerful stature shrank markedly, our strong teeth rotted, our massive bones became thin and brittle, our thick hair grew thin and fell out at an early age. In fact, evidence indicates that while our hunter-gatherer ancestors were tall, strong, robust, with hard teeth and bones, and apparently healthy to their death—usually of a violent nature instead of progressive degradation through “ageing” as later became the norm, our oldest cereal-eating ancestors in contrast, were the exact opposite: small, weak, fragile, with rotten teeth, and advanced osteoporosis in their bones at the time of their death in their early 50’s. (For a lot more details about all the points discussed up to here, I strongly recommend Jared Diamond’s fascinating books: The Third Chimpanzee; Guns, Germs and Steel; and Collapse).

Today, at the beginning of the 21st century some 10000 years later, we know exactly why we were never meant to consume carbohydrates on a regular basis, let alone in large quantities as we do today, such that they provide a significant part of our daily calories—sometimes even the majority! We know exactly why because we have pretty clearly understood the primary effect of phytic acids or phytates, the importance of dietary fats, and the insulin mechanism.

Phytates are compounds that exist in all grains and legumes—where they are found in the greatest concentration—as well as in all nuts and seeds. Some animals like rats, for example, have evolved the necessary digestive mechanisms to break down phytates, but humans have not. The consequence is these bind to minerals in the gut and in so doing prevent their absorption into the bloodstream. The regular consumption of grains and legumes—and we believe that many of our first agrarian ancestors lived almost exclusively from grains—leads to severe mineral deficiencies that result in demineralisation of the teeth and bones, exactly as is seen in the remains of these ancestors.

Moreover, any diet consisting primarily of grains (and legumes) as was theirs, will also inevitably be extremely deficient in fat, that is now know to be essential for the proper function of every cell, tissue and organ in the body (especially the brain), but also crucial in the absorption of minerals. So, the combination of a high concentration of phytates together with an almost complete absence of fat, made for an extremely effective demineralisation, which is indeed seen in the smaller statures, weakened bones and teeth, and considerably shortened lifespan of our agrarian ancestors. This obviously still applies today: the more phytates, the faster the demineralisation; and the less fat; the faster the demineralisation.

Finally, insulin is a hormone secreted by the pancreas. There is always a certain concentration of glucose in the blood, and there is also always a certain concentration of insulin. If there isn’t a major metabolic disorder, then the higher the glucose concentration, the higher the insulin concentration. And conversely, the lower the glucose concentration, the lower the insulin concentration. But since the body is programmed to always keep glucose concentrations to a minimum, as soon as there is a simple carbohydrate in our mouth, insulin is secreted into the bloodstream. As the glucose—either from the simple carbohydrates or from the breakdown of starches—enters the bloodstream through the intestinal wall, and as its concentration continues to rise, the pancreas continues to secrete insulin to match the concentration of glucose; but always a little more, just to be on the safe side.

Why? If glucose were good for us, then why should we have this highly sensitive mechanism to always try to get rid of it?

Insulin’s primary role is storage of “excess” nutrients, and regulation of fat storage and fat burning: when insulin is high, there is fat storage; when insulin is low, there is fat burning. It’s very simple. This, in turn, means that insulin is the primary regulator of energy balance, and therefore of metabolism. From an evolutionary perspective, the importance of insulin is perfectly clear. Firstly, it is a mechanism that is common to almost if not all living creatures, from the simplest to the most complex, because all living creatures depend for their survival on a mechanism that allows them to store nutrients when they are available for consumption but not needed by their metabolism, in order to live through periods where food is not available. This is why the role of insulin is so fundamental and why it is a master hormone around which most others adjust themselves. But when glucose levels are higher than a minimum functional threshold, what insulin is trying to do, in fact, is to clear away the glucose circulating in our bloodstream.

Why? Because the body simply does not want large amounts of glucose in circulation. In fact, it wants blood glucose to be low, very low, as low as possible. And beyond this very low threshold of glucose concentration between 60 and 80 mg/dl, it always tries to store it away, to clear it from the bloodstream, to make it go away. It tries to store as much as possible in the muscles and the liver as glycogen, and converts the rest to fat stored away in fat cells. That the body does not want glucose in circulation is most certainly related to the fact that the insulin mechanism even exists: very small amounts of glucose in the bloodstream is essential for life, but large amounts of glucose in the bloodstream is toxic. And all simple and starchy carbohydrates stimulate the secretion of insulin from the pancreas.

Keep in mind that the presence of insulin promotes the storage of glucose, but also of proteins as well as fats. Once more, its role is to store away and deplete the “excess” nutrients in the bloodstream for later times of food scarcity. Once the insulin molecule has delivered its load (glucose, protein or fat) through the receptor on the cell, it can either be released back into circulation or degraded by the cell. Degradation of circulating insulin is done by the liver and kidneys, and a single molecule will circulate for about 1 hour from the time it was released into the bloodstream by the pancreas until it is broken down.

It is important to add that stress stimulates the secretion of stress hormones that in turn stimulates the release from and production of glucose by the liver, just in case we need to sprint or jump on someone to save ourselves. Obviously, the presence of glucose—now not from ingested carbohydrates but from the liver itself—will trigger the secretion of insulin in exactly the same way as if we had eaten sugar. This means that stress mimics the physiological effects of a high sugar diet. And that’s not good. In fact, it’s pretty bad.

Chronically elevated glucose levels lead to chronically elevated insulin levels. And this is much worse. Like for any kind of messenger mechanism—as is insulin, if there are too many messengers repeating the same message over and over again, very soon they are not heard well because their efforts at passing on the message becomes more like background noise. Frustrated that they are not taken seriously, the messengers seek reinforcements in numbers to be able to pass on their message more forcefully. This, however, leads to even more annoyance on the part of the listeners—the message recipients—that now start to simply ignore the message and the messengers. This process continues to gradually escalate up to the point where the terrain is completely flooded by messengers yelling the same thing, but there is no one at all that is listening because they have insulated their windows and doors, and closed them tightly shut.

Here, the messengers are the insulin hormone molecules secreted by the pancreas and coursing throughout the body in our veins and arteries; the message recipients are our cells: muscle tissue, liver and fat cells; and the message itself is “Take this sugar from the bloodstream, and store it away. We don’t want this stuff circulating around.” The desensitisation—the not-listening—to different, progressively higher degrees with time, is called insulin resistance. Finally, the complete ignoring by the cells of the message and the messengers is called type II diabetes.

Furthermore, insulin resistance—not in the muscle, liver and fats cells, but in the brain cells—clearly leads to neurological degradation identified as cognitive impairment, dementia, Alzheimer’s or whatever other terms are used. Because beyond the fact that type II diabetes and Alzheimer’s disease are both increasing together at an alarming rate in the US and other western countries, and beyond the fact that diabetics are at least twice as likely to develop Alzheimer’s compared to non-diabetics, the basic condition of insulin resistance inevitably leads to chronically elevated glucose concentrations simply because the cells do not allow the glucose to enter. And it is well known that glucose in the blood simply and straight forwardly damages to the lining of the blood vessels, which then leads to plaque formation—the body’s repair mechanism for the damaged cells underneath. Thus, as are the coronary arteries of advanced atherosclerotic heart disease sufferers (and diabetics): riddled with plaques, so are the arteries and blood vessels in the brains of Alzheimer’s sufferers (and diabetics).

Now, although many claim that these and other issues related to the development of Alzheimer’s disease and other kinds of neurological degradation are still relatively poorly understood, as far as I’m concerned, it’s all the evidence I need: Do you want the vessels supplying blood to the brain fill up with plaque in response to the damage caused by glucose circulating in the bloodstream? Do you want the coronary arteries fill up with plaque in response from the damage caused by glucose circulating in the bloodstream? I certainly don’t. How could anyone?

What do we need to do? Very simple: just eliminate  simple and starchy carbohydrates from the diet. Concentrate on eating a lot of green vegetables, tons of green leafy salad greens; plenty of fat from coconut milk, coconut oil, nuts and seed of all kinds; and a little animal protein from eggs, raw cheese, wild fish and meat (if you chose to do so). Blood sugar will drop to its minimum, insulin will follow suit, and the body’s own repair and maintenance mechanisms will clear out the plaques, repair damaged tissues, degraded unneeded scar tissues and small tumours and recycle these proteins into useful muscle tissue, and many, many more amazing things will happen to the body that it will gradually look and feel younger and stronger as time passes. Sounds too good to be true? Just try it, and you’ll see for yourself. I guarantee it.

Water, ageing, and disease

Thinning skin, drying hair, wrinkles, brown spots here and there, patches of discolouration. Sagging eye lids, sagging cheeks, sagging skin all over the body. Loss of bone mass, loss of muscle mass. Stiffening joints, stiffening muscles, stiffening tendons and ligaments, stiffening veins and arteries. Weakness, tiredness, aching. Loss of memory, loss of concentration, loss of intellectual capacity, dullness. Metabolic syndrome, diabetes, senility, dementia, Alzheimer’s, arthritis, elevated cholesterol, atherosclerosis, stroke, kidney failure, liver failure, heart failure, cancer.

Are all these symptoms, these conditions, independent from one another? Are they different? Do they arise spontaneously and develop on their own? Do they just fall upon us unpredictably as rain does? Or are they consequences of more basic factors that elude most of us.

If we could ask the late Dr. Batmanghelidj (1931-2004), M.D., about ageing and disease, he would surely say that its primary cause is the cumulative effects of chronic dehydration on the body, and the plethora of consequences that this brings about. This chronic dehydration that only increases in severity with time, gives rise to so many problems.

But independently of anyone’s opinion, it is an observational fact is that when we are born, the body is 90% water, but when we die, it is only 50% water. Doesn’t this tell us something? Doesn’t this tell us that ageing and dying could be considered as a process of gradual dehydration?

The main way in which we provide water to the body is by drinking. And all of the nutrients required to sustain the body come from the foods we eat. Therefore, the digestive system is truly at the root of it all. As I explained in this previous post on the important of water in the digestive system, the direct consequences of not drinking adequately on an empty stomach long enough before eating, are the poor digestion of food, and the damage caused to the lining of the stomach and intestines that eventually lead to ulcers and leaky gut syndrome.

But poor digestion of food means improper break down of protein into amino acids, and the deficiency in the full range of these essential compounds necessary for so many functions in the brain and in every cell of the body. Poor digestion of food means improper break down of fats into their constituent fatty acids that provide not only the primary source of energy, but also the very building blocks of the membrane of every single cell in the body. Poor digestion of food means improper absorption of minerals and the complex molecules we call vitamins, that together with the proteins and fats are used not only in building all the tissues in the body, but also in every single chemical reaction, transport and communication between cells and tissues. Over time, poor digestion and damage to the digestive organs leads to the permanent loss of the ability to absorb certain minerals and vitamins. There is no doubt that this leads to complications that will manifest in various complex ways.

The lack of water in the digestive system leads to a lack of water in the bloodstream. The blood gradually thickens, its volume decreases, and its viscosity increases. This increases the friction between the blood and the walls of the blood vessels, and therefore the resistance in the flow. The heart is now under severe stress as it attempts to pump this thick, viscous, sticky blood to all parts of the body, and through all the vessels from the largest arteries to the narrowest almost microscopic veins. But this intense efforts by the heart also stressed the vessels themselves. Stress on the vessels leads to lesions. Lesions lead to plaques whose purpose is to patch up and heal the damaged tissues. The accumulation of such plaques, whose spontaneous bursting causes strokes, leads to atherosclerosis that eventually leads to heart failure. Pretty grim picture, isn’t it? But far from being complete yet.

The lack of sufficient amounts of water in the bloodstream obviously means that every organ and every cell of the body gradually becomes more and more dehydrated over time. For the cell, water is by far the most important substance, it is the context in which absolutely everything takes place, and on which everything depends. In order to maintain as much of this precious water as is possible, every single cell starts to produce more cholesterol to seal its membrane a well as possible and keep and protect its water. This is why dehydration leads to the appearance of excessive amounts of cholesterol, which in this case is the cell’s essential water preservation mechanism.

The lack of sufficient amounts of water in the bloodstream is particularly detrimental to the articulations. The joints of the body, all those areas where out limbs bend, are a complex assemblage of tissues whose primary component is cartilage. Cartilage is a kind of a simple matrix that holds water. It is the water content of the cartilage that gives it its suppleness and flexibility, allowing it to protect the bones from rubbing against each other in the joints when we move. It is well known that as we age, all of our joints and cartilage dries out, and we develop what we call arthritis. But is this because we are getting older, or is it because we are getting more and more dehydrated with every passing day? Is arthritis a disease of ageing or is it a consequence of chronic dehydration?

The amazing thing is that the only way to bring water to the cartilage in the joints to maintain their flexibility and prevent their degradation is through the porous ends of the bones to which the cartilage is attached. And the only way to bring water to the end of the bone is through its marrow. And the only way to bring water to the marrow is by way of the blood. Therefore, to prevent the gradual dehydration and subsequent breaking down of the cartilage in the joints, the blood must be well hydrated: thin, easy flowing and full of water.

And what does all this mean for the rest of the body? By weight, the muscles are 75% water; the blood is 82% water; the lungs are 90% water; the brain, the primary element of the central nervous system, is 78% water; even the bones are 25% water. So, it’s pretty simple: as dehydration increases over time, all organs, all tissues and all cells suffer, shrink, weaken, and succumb ever more easily to disease, whatever form it may take.

Dr. Batmanghelidj presents a convincing line of arguments linking breathing and lung disorders like asthma and allergies to chronic dehydration, and also believes that the dehydration of brain and nerve cells whose composition is also mostly water, leads to disorders of the central nervous system such as Alzheimer’s disease.

And the skin? Think about any fruit or vegetable that you place on a shelf in the fridge, like an apple, a carrot or a radish, and leave there for a long time. It will gradually soften, then start to wrinkle, and with time continue to soften and wrinkle more and more until it is nothing but a tiny dried out little thing. Moreover, you may also have noticed that if you take a partly dehydrated carrot, radish, or celery stick, for example, cut them and place them in water for a while, they will re-hydrate by refilling the cells with water, and in so doing become hard and crunchy once again. But if you wait too long, then no matter how much time you leave them in water, the cells will not re-hydrate. Logically, since our water content is similar to a fruit or vegetable, what happens to the body is probably very similar, and hence gradual the softening, wrinkling, weakening, and overall degradation of the bodymind at the days and years go by.

Obviously, this does not mean that by drinking enough pure water—no other liquids can be substituted for water—to ensure that the bodymind is well hydrated, we will not age. Of course not. But at least, we will ensure that ageing and all the consequences associated with ageing are not accelerated by dehydration. The last thing we want is to accelerate our rate of ageing and our susceptibility to disease.

The truth is that for most living beings on Earth, water is life. There is no question about this. We and most terrestrial animals are constituted of about 60-70% water and 30-40% minerals—by mass. But in fact, in terms of the number of molecules in our bodies, we are 99% water! Can we grasp the significance of this? Can we now realise what dire consequences the slightest dehydration can cause to every cell, every tissue, every organ, and every system of the body? It is hard to quantify, but it is huge. And coming back to our initial question: are ageing and disease different? Are they related? What do you think?

Although chronic dehydration is so common that it is generalised, avoiding dehydration is very simple: drink water, unsweetened herbal teas, and light green tea. Don’t drink sweet drinks, juices or sodas: these are full of sugar, including large amounts of fructose, that totally disrupt both the hormonal system and the metabolism, promoting hormonal imbalances and insulin resistance. Don’t drink milk: this is a food that contains fats, proteins and carbohydrates, and trigger all the required digestive processes that further exacerbate the problems associates with chronic dehydration. Just drink water.

At the very least, drink half a litre when you get up in the morning (7:00), half a litre mid-morning (10:30), half a litre 30 minutes before lunch (12:30), half a litre in the late afternoon (16:30), and half a litre 30 minutes before dinner (18:30). And make sure you have plenty of unrefined sea salt with your meals. If you are fasting, take a pinch of salt on at least some of the occasions when you drink to reach a total of 1 to 2 teaspoons over the course of the day (including the salt eaten with meals). In this way, you will provide your body a good amount of water and salt to ensure proper hydration and excretion of acids through the urine.

Why we should drink water before meals

We all need to drink at least about two litres of water every day. Not juice, not sodas, not coffee, not tea: plain water. None of these other liquids have the properties of water, nor do they have the desirable effects of water on the body. Most of us don’t however, and so we are chronically dehydrated. Whether it is 75% or as high as 90%, it is evident that a very large portion of the population is chronically dehydrated.

The digestive system can be viewed as the most fundamental because everything used to sustain life in the body goes through it. In a very real sense, we are a digestive system, supplemented by a central nervous system and refined sense organs to allow us to devise ways to get food (and avoid being eaten), coupled to a refined locomotor system to allow us to gather the food (and run away when it is needed). Since every component of every cell in the body is made from the nutrients in our food, it is obvious that everything in the body depends on the digestive system. And for the digestive system, the single-most important element is the presence of ample amounts of water.

cropped-glass-of-water

As soon as we even think about eating, the digestive system starts to get ready. The pancreas secretes a little jolt of insulin just in case carbohydrates come in, and the stomach starts to produce the highly acidic digestive gastric juice (pH of 1-2). This gastric juice is composed of only a little bit (0.5%) of hydrochloric acid (HCl) and a lot of salt, both sodium chloride (NaCl) and potassium chloride (KCl). The stomach has sensor cells to know exactly how much protein, fat and carbohydrates are present at any given time, and thus can adjust the production and composition of the gastric juice.

Although present in very small amounts, the hydrochloric acid is the essential compound for activating the enzymes responsible for breaking down protein, which is its main purpose because both fats and carbohydrates are mostly broken down in the intestine. But to make it to the stomach without causing any damage along the way, the two constituents of this highly corrosive acid, the hydrogen (H) and the chlorine ions (Cl), are produced separately and transported to the inside of the stomach where they combine to form the acid.

The delicate lining of the stomach with all its different kinds of highly specialised cells, is protected from the acidic gastric juice by an alkaline layer of mucus. This mucus is between 90 and 98% water, with some binding molecules and a few other components. It can be regarded as a blanket of water whose primary role in the stomach is to protect its lining from the gastric acid. The very thin mucosa that produces and maintains the mucus layer, also secretes sodium bicarbonate that sits in it, and neutralises the acid upon contact when it penetrates the layer, leaving only sodium chloride (salt), water and carbon dioxide. The neutralisation reaction is simple: HCl + NaHCO3 -> NaCl + H2O + CO2.

As we get progressively more dehydrated, not only are the stomach cells incapable of releasing adequate amounts of water into the stomach in order to allow for the proper mixing of the food and acid into chyme with the optimal consistency, but the thickness of the protective mucus layer decreases, thus allowing the acidic contents to damage the fragile lining. This is what eventually leads to stomach ulcers, according to a well known specialist in the matter, Dr Batmanghelidj, author of Your Body’s Many Cries for Water.

The contents of the stomach are churned and blended between one and three hours depending on the amount and composition, until the chyme is liquified and smooth, at which point it is poured into the duodenum, the first part of the small intestine. It is in the small intestine that the real work of the break down and absorption of nutrients into the bloodstream takes place over a period of about 24 hours. The sensor cells in the duodenum will immediately determine the pH and composition of the chyme in order to send the messenger hormones to the pancreas to secrete the right amount of the alkaline, watery sodium bicarbonate solution necessary to neutralize the acid, and to the liver to secrete the right amount of bile needed for the breakdown of fats.

And even though the pancreas is known primarily for its role in producing and secreting insulin needed to clear the bloodstream of sugar, it is arguably its role in secreting this alkaline solution that is the most important. Indeed, as the duodenum does not have a protective layer of mucus as the stomach, it is this sodium bicarbonate solution that protects it and the rest of the small intestine from the devastating effects that the highly acidic chyme can have on it.

However, just as even partial dehydration causes the protective mucus layer in the stomach to dry out and shrink, making it permeable to the gastric acid that eats away at the delicate soft tissues, dehydration also causes the pancreas to be unable to secrete as much of the watery sodium bicarbonate solution as is required to fully neutralise the acidic chyme that, therefore, also damages the intestine. In fact, that there are several times more cases of duodenal as there are stomach ulcers attests to the reality that the lining of the intestine is all that much more fragile as it is unprotected and thus directly exposed to the excessively acidic chyme.

Therefore, water is of the utmost importance in protecting the lining of the stomach and intestine from the acid required for the break down of proteins into amino acids. Water is of the utmost importance for proper digestion and absorption of the nutrients in the food. And hence, water is of the utmost importance in maintaining a healthy digestive system meal after meal, day after day, and year after year throughout our life.

We must make sure that the body and digestive system are properly hydrated before eating. And for this, all we need to do is drink half a litre of plain water 30 minutes before meals, and not drink during nor after the meal for two to four hours.

Drinking during or soon after a meal will only dilute the chyme, making it excessively watery. This will not lower the pH, because water does not neutralise acid. It is best to ensure proper hydration prior to the start of the digestive process, providing the water necessary for the mucosa and pancreas to function optimally, and allow the stomach to adjust the water content of the chyme on its own. I personally usually wait two hours after a snack or small meal, and at least three to four hours after a large meal.

The time needed for the chyme to leave the stomach through the pyloric sphincter and enter the duodenum depends on its amount and composition. For example, fruit or any other food consisting mostly of simple sugars eaten on an empty stomach will make it into the intestine, and the sugar into the blood, in a matter of minutes: Since there is no protein, no acid is required for its breakdown in the stomach; and since there is no fat, no bile is required to break it down in the intestine.

Naturally, the time needed for the stomach to process a small meal will be less than that needed to process a large meal of more or less equal composition. In fact, given that our stomach is a very small pouch with an empty volume of about 50 ml, and a full volume of about 1 litre (up to a max of 2-3 litres when it is really extended),  the time needed for large meals increases substantially and disproportionately compared to smaller meals.