Ten years of carbohydrate restriction: here’s why

It was almost exactly ten years ago, in March 2008, that I read Ron Rosedale’s Insulin and Its Metabolic Effects.  I now know that this is surely the one thing I’ve read that has had the most impact on my life. Rosedale’s presentation was a total revelation to me:  I had never read anything about insulin before, and his explanations of the biochemical and physiological functions and effects of insulin on the body all made perfect sense in and of themselves, but also appealed to my appreciation and reliance on complete explanations that are consistent with the facts we can observe about them.  I eliminated insulin-stimulating carbohydrates from my diet overnight.  That was that.

We were then still vegetarian at home.  Hence, the family breakfast, following Mercola’s example, became smoothies made of raw, local, pastured eggs with berries and stevia.  That lasted quite a while.  I always travelled with my hand blender and stevia, brought eggs if it was for short trip, or scouted out places to get good ones when the trip was longer.  Throughout a summer trip along the American west coast, I made our raw egg smoothies every day, in hotel rooms and campgrounds.

At one point, I discovered coconut oil and coconut milk.  The breakfast smoothies evolved to being made of eggs and coconut milk with berries, and eventually only coconut milk, berries and stevia.  This period lasted several years until we moved on to cold pressed green juice with coconut milk; it was two thirds juice and one third milk.  We also did this for several years until about two years ago when our son left for university, at which point we dropped having breakfast entirely to allow for a daily overnight fasting period of about 16 hours from after dinner to lunchtime.

 

Food intolerance testing in 2014 showed that all three of us were intolerant to eggs; we removed them from our diet.  My wife and I had the most and our son the least intolerances; this was not surprising given we were a lot older than him.  It also showed my wife and I were intolerant to most dairy products; we removed them from our diet.  We were also intolerant to grains: both highly intolerant to wheat, and then I, in addition, somewhat less so to barley, malt, and quinoa—we ate quinoa almost daily for years as our son was growing up.  He, although not intolerant to dairy or wheat, was intolerant to almonds, pistachios, and brazil nuts. (Here are my test results, if you’re interested.)

Imagine: vegetarian for 20 years, with a diet during these two decades from teenage hood to middle adult hood consisting primarily of wheat and grain products, beans, cheese and yogurt, eggs and nuts.  Of course, also plenty of sweet fruit, starchy vegetables, and salads, as with is true for most vegetarians.  But the bulk, both in volume and in calories, was from grain products, cheese, and eggs.  The shocker for me was that the food intolerance test painted the profile of a meat-eater:  if you remove grains, dairy, and eggs, what is left is animal flesh, vegetables and fruits.

If now, in addition, you remove fruit and starchy vegetables to avoid insulin-stimulating carbohydrates, all that is left is animal flesh and green vegetables.  That’s just how it is.  We also used to eat almonds—the richest in magnesium, and brazil nuts—the richest in selenium, almost daily.  But because our son was intolerant to both and I was intolerant to brazil nuts, we removed those from our diet as well.

IMG_2275

 

These were all food intolerances; they were not allergies.  But they were nonetheless intolerances, some stronger, some weaker.  If you are concerned about health in the sense of being in the best state of health you can, then obviously you must not eat foods to which you are intolerant.  Otherwise, your immune system is triggered each time the offending molecules in those foods enter the gut and bloodstream.  This gradually but inevitably makes the intolerance greater, your system weaker, and body sicker.

Over these ten years, I’ve read quite a few books, articles, blog posts, and detailed discussions about health-related matters.  I’ve also experimented quite a bit with my own diet, and learned a great deal from that.  The other thing I’ve done a lot of, is have conversations with people about diet, nutrition, diseases, and the metabolic effects of different foods and of insulin.

My position—which has only grown stronger with time—is that the first and most fundamental pillar of optimal health is having a metabolism that runs on fat.  And this means keeping insulin levels low by restricting sugars and starches.  Not necessarily always, but most of the time, as in almost always.

The first question that people ask when they find out is why: Why do you not eat bread? Bread has forever been essential to humans.  I simply couldn’t live without bread.  Or, why don’t you eat potatoes, or rice, or pasta?  They’re so good!  I simply couldn’t live without potatoes and pasta.  And, you don’t even eat fruit? But isn’t fruit full of vitamins and minerals?

The way I have answered has depended on a lot of things: the setting, the atmosphere, the company, the time available, but most importantly on the person.  Some people are actually interested to find out, and maybe even learn something.  Most, however, are not.  Consequently, I have made the answer shorter and shorter over the years.  Now, I even sometimes say: well, just because, and smile.

Maybe you have wondered, or even still wonder why.  Maybe although you’ve read so many times in my writings that I think everyone seeking to improve their health should restrict insulin-stimulating carbohydrates, you still wonder what the main reason is, what the most fundamental reason for which I don’t eat sugars and starches.  Here’s why:

 

It’s not primarily because carbs and insulin make us fat by promoting storage and preventing the release of energy from the ever larger reserves of fat in our body: I am lean and always have been.

It’s not primarily because carbs and insulin lead to insulin resistance, metabolic syndrome, and diabetes; inflammation, dyslipidemia, water retention, and high blood pressure; kidney dysfunction, pancreatic dysfunction, and liver dysfunction: my fasting glucose, insulin, and triglycerides have been around 85 mg, 3 mili units, and 40 mg per dl for years; my blood pressure is 110/70 mg Hg, glomerular filtration rate is high, and all pancreatic and liver markers are optimal.

It’s not primarily because carbs and insulin promote cancer growth since cancer cells fuel their activity and rapid reproduction by developing some 10 times the number of insulin receptors as normal cells to capture all the glucose they can, fermenting it without oxygen to produce a little energy and tons of lactic acid, further acidifying the anaerobic environment in which they thrive.  My insulin levels are always low, and my metabolism has been running on fat in a highly oxygenated alkaline environment for a decade.

It’s not primarily because carbs and insulin promote atherosclerosis, heart disease and stroke by triggering hundreds of inflammatory pathways that compound into chronic inflammation and damage to the blood vessels, which then leads to plaque formation and accumulation, restriction of blood flow, and eventually to heart attack and stroke: my sedimentation rate, interleukin-6, C-reactive protein, and Apolipoprotein-A are all very low.

It’s not primarily because carbs and insulin promote the deterioration of the brain, dementia, and Alzheimer’s, both through the damage to blood vessels around and in the brain itself, and insulin resistance of brain cells, which together lead to restricted blood flow, energy and nutrient deficiency, and accumulation of damaging reactive oxygen species and toxins in the cells, and, unsurprisingly, eventually to dysfunction that just grows in time: because my metabolism runs on fat, this means that my brain runs on ketones, and is therefore free of excessive insulin or glucose exposure.

It isn’t primarily for any of these reasons, which, I believe, are each sufficient to motivate avoiding sugars and starches in order to keep tissue exposure to glucose and insulin as low as possible.

 

My main reason is that, at the cellular level, in its action on the nucleus and on gene expression, insulin is the primary regulator of the rate of ageing.

Insulin is essential for life: without insulin, cells starve and die. It is essential for growth: without insulin cells don’t reproduce, and there can be no growth.  This is why at that most fundamental level, insulin regulate growth in immature individuals.  But in mature individuals, once we have stopped growing, insulin is the primary regulator of the rate of ageing, both in terms of its effect in suppressing the production of antioxidants and cleansing and repair mechanisms within the cell, but also in stimulating cellular reproduction. And the more reproduction cycles, the greater accumulation of DNA transcription defects, the faster the shortening of telomeres, and the faster the ageing.

This is a fundamental fact that appears to be true for all living organisms.  It is as true for yeasts and worms, as it is for mice and rats, as it is for dogs and humans.  And the rate of ageing is the rate of degeneration, of growing dysfunction, of more damage and less repair, of lower metabolic efficiency and less energy, of increased cell death and senescence.  I personally wish to be as healthy, energetic, strong, and sharp as possible for as long as possible.  This is why I avoid sugars and starches.  This is why I restrict insulin-stimulating carbohydrates.

If you think this article could be useful to others, please Like and Share it.

Want to lose weight? Here’s what you need to know in under 1000 words

One, you don’t want to lose weight: you want to lose fat. You don’t want to lose muscle or bone because they are very important functionally and metabolically. What you want to lose is fat. So weight loss needs to be reworded as fat loss.

Two, roughly speaking, the body is generally either storing surpluses or using reserves.

Three, the major fuels for the body are glucose and fatty acids.

Four, for the body to use fat reserves, insulin levels must be low. Fat cannot be efficiently utilized as long as insulin is high, because insulin promotes storage.

Five, the thyroid gland regulates metabolism and brain function. It requires adequate amounts of iodine without which it cannot work properly. To ensure healthy metabolic function, iodine supplementation is critical.

That’s what you need to know. If you want more details, I can expand a bit.

Insulin regulates fat storage

Every second that we are alive, trillions of biochemical reactions take place. The energy currency is adenosine triphosphate, ATP. Mitochondria produce ATP primarily using glucose or fatty acids. Fatty acids produces a lot more, but glucose is much easier to use. Both are used but one always dominates. In general, if there is glucose to be used, fatty acids are not much. For fat loss, we want to promote fat burning for ATP production to fuel cellular activity.

High glucose levels from carbohydrate intake trigger insulin secretion. This is necessary to bring the glucose into the cell, and to get rid of it from the bloodstream where it causes damage to the tissues by glycation. Within the cell, glucose can be either fermented without oxygen or oxidised with oxygen. Lower oxygen levels (and very high short term metabolic needs) promote fermentation. Higher oxygen levels (and lower metabolic ATP production rates) favour oxidation. More fermentation leads to greater accumulation of lactic acid, which further decreases oxygen levels. Red blood cells do not have mitochondria and therefore can only produce ATP by fermenting glucose.

Lower glucose leads to lower insulin. This triggers the release of fatty acids and glycogen into the bloodstream. If sustained, low glucose leads to the production in the liver of ketones primarily to fuel the brain whose cells can either use glucose, ketones, or medium chain fatty acids because longer molecules cannot pass the blood-brain barrier.

The higher the glucose, the higher the insulin, and the faster the uptake and storage of nutrients from the bloodstream into cells. The lower the glucose, the lower the insulin, and the faster the stored fat can be released and used.

insulinFatStorageFatRelease

Amount of glucose stored as fat and amount of fat released from fat cells as a function of insulin concentration. Plot taken from https://optimisingnutrition.com

The most metabolically active tissue is muscle. The more muscle we have, the more energy is used, and the faster both glucose and fat are burned to supply fuel to the cells. The more we use our muscles, and the more intensely we use them, the more they grow, and the more efficiently they burn both glucose and fat. Also, the stronger the muscles, the stronger and denser the bones will be. This is very important.

Therefore, as we burn more fat, we burn fat more efficiently. As we use our muscles more intensely, we burn more fat. And as we build more and stronger muscle, we burn even more fat even more efficiently, and make the bones stronger.

Different Carbohydrate Intolerance Levels

These mechanisms are universal in animals, but each animal is different, and each person is different. As far as fat loss is concerned, the individuality of people is related to their predispositions to insulin resistance and carbohydrate tolerance, (or actually, intolerance). Every person is differently intolerant to carbohydrates and differently predisposed to insulin resistance.

This is why in a group eating the same diet, there are people who are thin, people who are chubby, people who are fat, and everything in between. Basically, the greater the predisposition to insulin resistance (and the more sedentary), the lower the tolerance to carbohydrates will be, and the fatter you will tend to get. In contrast, the lower the predisposition to insulin resistance (and the more active), the higher the tolerance to carbohydrates, and the thinner you will tend to be.

This translates into different thresholds in the amount of carbohydrate we can eat without negative metabolic consequences, and consequently, the amount under which we must stay in order to burn fat instead of storing it. As a guideline, if you want to burn primarily fat for your body’s energy needs, this threshold would be around 20–25 grams per day if you are fat; around 30–50 gram per day if you are neither fat nor thin, and could be around 80–100 grams per day if you are very thin.

But no matter what your personal threshold happens to be, it will always be the case that the lower the intake of carbohydrates, the lower the glucose and insulin will be, and the more efficiently your body will burn fat as fuel.

Fat Loss Rate

The amount of fat that is burned is determined by the energy balance. The greater the total amount of energy we use, the greater the total energy needs. Total energy needs will mostly be met by energy from food intake and energy from fat reserves. If food energy intake is high, the need for stored energy will be low. If intake is lower, the need for energy from fat reserves will be higher.

Pushing this to the limit—maximal usage of fat stores—we would provide the protein necessary to maintain muscle and other active tissues and nothing more. In this situation, basically all energy needs would be supplied by stored fat reserves and glycogen when needed. This is greatly enhanced by resistance training.

The amount of protein needed is proportional to muscle mass and muscular activity. As a guideline, you can use 1–1.5 grams per kg of lean mass per day in the case of little physical activity, and 2–3 g/kg/d in the case of high muscular activity levels. Excessive protein is not great, but more is almost always better than less.

Fat burning and protein synthesis can be further optimised by intermittent fasting. Extending the time between feedings allows glucose and insulin to drop lower, which increases the rate of fat burning. And by eating fewer but larger amounts of protein in a meal is better because protein synthesis increases in proportion to the amount consumed.

Thyroid function regulates metabolism. Iodine is used in every cell, but in the thyroid, it is concentrated to more than 100 times the average of other tissues, because iodine is the main structural component of thyroid hormones. Iodine supplementation is critical because most soils are highly depleted. It is water soluble and very safe to supplement with.

Summary

  • High insulin from carbohydrate intake promotes fat storage.
  • Low insulin from restricting carbohydrates promotes fat loss.
  • Individual predispositions determine the threshold of carbohydrate tolerance.
  • Below this threshold fat is used as the main source of cellular fuel.
  • The rate of fat loss depends on balance between energy needs and energy intake.
  • Maximal fat loss rates are achieved by supplying just the protein needed to sustain lean tissues.
  • Iodine supplementation is critical to healthy thyroid, metabolic and brain function.

If you think this article could be useful to others, please Like and Share it.