Insulin and Triglycerides

Every time I review someone’s blood test results, and then discuss with them what they mean and what they should do to improve their numbers, there’s something I almost always have to explain. And this was the relationship between fasting insulin and triglyceride levels.

Take a look at this plot:

trigs_vs_insulin_gb

Plot showing ten pairs of measurements of insulin and triglycerides, made from the same blood samples. They were collected between 2011 and 2017, and all are from my own blood tests.

It shows measurements of insulin concentration on the horizontal axis in mili units per millilitre (mIU/ml), and triglyceride levels on the vertical axis in milligrammes per decilitre (mg/dl). This is a correlation plot in which independent measurements of one variable are plotted against independent measurements of another in an attempt to see if there is a relationship between them.

Is there an order in the way the dots are organized? They are clearly not randomly distributed as a circular cloud of dots—it would mean that there is no relationship. Instead, we see what looks like a linear relationship in which lower values of insulin correspond to lower values of triglycerides, and higher values of insulin correspond to higher values of triglycerides. It’s not a straight line, but it’s definitely a clear linear relationship, and the value of the correlation coefficient, which quantifies how tight the relationship actually is, of just under 0.9 is pretty close to 1. In other words, it’s a pretty tight linear relationship.

Triglyceride is a fancy word for fat or lipid, because fat molecules are composed of three fatty acids held together by a glycerol structure. This is what triglyceride refers to. The amount of fat in the blood is affected by the amount of fat we eat, and the amount of body fat we have. Naturally, after a fatty meal, triglyceride levels will increase as the fat goes from the digestive system into the blood, they will reach a maximum, and then start to go down. The longer we wait before we eat again, the lower they will go. But there’s a few complications.

The first is that depending on the amount of insulin, one of whose jobs it is to transport nutrients into cells, whatever is circulating in the blood—and this includes glucose, of course, but also protein and fat—will in general be stored away faster if insulin is higher, and slower if insulin is lower. This means that if you eat fat together with sugar or starch, the whole lot will be packed away, and mostly as fat, minus the little bit of glucose your muscles and liver have room to store up as glycogen.

The second is that depending on the state of insulin sensitivity—the fundamental parameter that determines how well or poorly cells can use fat for fuel—triglycerides will in general be used up faster if we are more insulin sensitive and slower if we are more insulin resistant. This means that in the morning, twelve to fourteen hours after having had the exact same meal, the more insulin sensitive person will have lower triglyceride levels than the more insulin resistant.

And in fact, no matter if we have a measure of fasting insulin or not, and no matter how little we know about the person’s overall health, fasting triglyceride concentration is probably the best general marker of insulin sensitivity. Nevertheless, because their levels fluctuate quite a lot over the course of each day as a function of what we eat and drink, it is true for triglyceride levels as it is true for many other blood tests that are affected by the kind and amount of food and drink we’ve had over the last days, and most importantly by the amount of sweet or starchy carbohydrates.

Now, take a look at this second plot:

trigs_vs_insulin_final

Plot showing, in addition to the 10 points shown in the first plot (in red), another 20 pairs of measurements of insulin and triglycerides, also all from the same blood samples, but from seven other persons.

It shows the same 10 data points shown in the first plot from my own results, but with another 20 pairs of measurements taken from other people that I’ve coached and helped with the interpretation of their results. You can see that the relationship is better defined because of the additional points that now together cover a wider range of values on both axes.

However, you can also see that, the relationship is not as tight. In particular, there are a few points that are quite far off the main trend—mostly those at the top of the plot with high triglyceride and low insulin values. We see how these off-trend points affect the tightness of the relationship seen in the initial data set when we compare the values of the correlation coefficients. These off-trend points lead us to the third complication I wanted to bring up.

But first, please take a minute to consider the matter: What could lead to having low insulin and at the same time high triglycerides? What could be the cause of the difference between my numbers, which did contain some very low insulin levels, but all of which were paired with equally low triglyceride values, and this other person’s numbers? What causes insulin to go down? What happens when insulin is low? What could cause triglycerides to go up while insulin is low?

Insulin, no matter how high it is, will start to go down when we stop eating. The longer we fast, the lower it will go. Each person’s baseline will be a little different depending mainly on their metabolic health and their body fat stores. The more efficient the metabolism is at using fat for fuel—the more insulin sensitive, the lower insulin will go. But also the lower the body fat stores are, the lower insulin will go. On the flip side, the more insulin resistant and the fatter we are, the longer it will take for insulin to drop and the higher it will stay at baseline.

This is pretty shitty. I mean, as we develop insulin resistance, average insulin levels will become higher and higher. As a result we’ll store calories into our growing fat cells more and more easily, and will therefore become fatter and fatter, faster and faster. But fat cells also secrete insulin! So, the more fat cells there are, the higher the insulin levels will be, and the harder it will be to lower our basal insulin. To burn fat, we need to lower insulin levels. The fatter we are, the higher the insulin levels will tend to be. And the fatter we are, the harder it will be to lower insulin levels.

It’s a bit of a catch, but in the end, it’s not such a big deal because basically everyone who is overweight and who starts to fast and restrict carbohydrates melts their fat stores away very well. It works incrementally: insulin goes down a little, insulin resistance is reduced a little, fat-burning starts; insulin goes down a little lower, insulin resistance is further reduced, fat-burning increases; and on it goes, until we have lost all those extra kilos of fat that we were carrying on our body, be it 5, 15, 20, 35, 60 or even 100 kg of fat! It’s just a matter of time.

Now, after this little tangent on insulin and fat stores, we can come back to those anomalous points in the plot, the most conspicuous of which is the one just below 120 mg/dl of triglycerides but only 3 mUI/ml of insulin. Have you come up with an explanation? Here it mine:

That point is from one of my wife’s blood tests. It is unusual because it was done after 24 hours of fasting. My 24-hour fasting blood test done a number of weeks before, and my numbers were 41 for trigs at 2.3 for insulin. The difference between her and I was that I was already very lean, whereas she wasn’t. Therefore, as she fasted, her insulin levels dropped very low, and then the body started releasing its fat stores into the bloodstream in high gear. This is why her triglyceride levels were this high while her insulin was that low. It’s almost certainly the same for the other two points up there with trigs at 110 and 90 with insulin around 4 and 2.5 (the latter one of which is also my wife’s).

Since we did many of our blood tests around the same time, there are 9 data points from her on the plot. Several are in the centre of the main trend at insulin values between 6 and 7, but I’d like draw your attention to her lowest insulin value that was measured at 1.8, and at which time her trigs were at 57, and her lowest triglyceride level of 48, at which time her insulin was at 2.2. This shows that on average her values are a little further along the trend than mine are because of the small difference in body fat, but that she has good insulin sensitivity, and a well-functioning metabolism that can efficiently use fat for fuel.

The other off-trend point, but in the other direction on the right hand side, with insulin just above 10 and trigs around 65, is from my mother’s first blood test which I ordered and included insulin and trigs, before I got her off carbs. She was 82 at the time, eating a regular kind of diet, but not a very nutritious or varied diet with plenty of bread and cheese, because she had serious problems moving around and taking care of herself while still living alone. And so, it’s just the result of being older, having plenty of carbs, but not being highly insulin resistant nor highly overweight. Her baseline insulin levels were just generally higher because of her age and diet, but her trigs weren’t excessively high.

However, after just four days of intermittent fasting on a very low carb regime with most calories coming coconut oil spiked green juices and coconut milk smoothies, her insulin went from 10.3 to 4.7, and she lost 5 kilos, which, of course, were mostly from the release of water that the body was retaining to counter the effects of the chronic inflammation that immediately went down with the very-low carb regime and fasting.

Later, having sustained this strict green healing protocol for about 6 weeks, her numbers were at 2.9 for insulin and 56 for trigs. And by then she had lost another 5 kg, but this was now mostly fat. She had, at that point, recovered full insulin sensitivity, had lost most of her body fat stores, and overhauled her metabolism. She was 83 at that time, which shows that this sort of resetting of the metabolism can work at any age.

On this note, let’s conclude with these take-home messages:

First, the next time you get a blood test, request that insulin and triglycerides be measured, because it’s the only way to know what your fasting insulin actually is, and because it is very telling of your level of insulin resistance or sensitivity, overall metabolic health, as well as your average rate of ageing as we’ve seen in a previous post on insulin and the genetics of longevity.

Second, when you get the results back, you will be able to tell from your triglycerides concentration, in light of your insulin level, either how well the body is using fat for fuel—in the case you are already lean, or how fast you are burning your fat stores—in the case you still have excess body fat to burn through.

And third, resetting metabolic health can be done at any time and at any age, and is yet another thing that shows us how incredible our body is—the more we learn generally or individually, the more amazing it reveals itself to be.

Join our patrons today!

Reversing diabetes: a four-week programme

The key factors of the process of reversing diabetes are: dropping blood sugar concentration and keeping it low, dropping insulin concentration and keeping it low, and alkalising the blood, fluids, tissues and organs—especially the pancreas, to eliminate accumulated acids and reverse the physiologically debilitating effects of chronic acidosis so common to diabetes.

We have examined both the process of developing and that of reversing diabetes in several previous articles. Now, we present a detailed four-week programme to put things into practice, begin recovering correct metabolic function, and get you on your way to ridding yourself of diabetes, if this happens to be a condition from which you are already suffering, towards which you are moving, or simply want to make sure it never develops.

As you will see, beyond the manipulation of the biochemistry through what is consumed, there are in addition several tweaks that are employed to ensure the best possible response to and outcome of the programme. These have mostly to do with timing: when we do things, when we drink, and when we eat. But also include important supplements (in addition to other ones you are taking like B12, ubiquinol, etc); as well as physical exercise, and specific types of exercise done under specific conditions.

The programme is constructed based on a four-week period because this is the amount of time that is needed, in the majority of cases, for the hormonal system to rebalance itself around the much lowered insulin levels, and for the cells and metabolism to regain insulin sensitivity and switch from using glucose and breaking down muscle tissue to satisfy energy needs, to instead use primarily fat, and naturally, as we would expect, the fat stored in the body’s adipose tissues throughout, which means sub-cutaneous—the fat that sits under the skin, intra-abdominal—the fat that is between the various digestive organs in the abdomen, and even the fat that is stored inside the tissues of organs like the liver and heart, and in the muscles themselves.

It is very important to understand, however, that even though the startup programme lasts four weeks, it is a transition period and a complete re-education that marks the beginning of a different way of doing things in order to first allow the body to heal itself and for you to regain your health, and then to maintain and refine this state of health over the course of the rest of your life.

It is also very important to understand that what leads and has led you to a diabetic or pre-diabetic condition are factors related primarily to diet and lifestyle, which if adopted by most will cause similar metabolic dysfunction, and obviously, if adopted anew following this four week programme will inevitably lead back to diabetes, and all that much faster for those whose system has already been compromised by the years and decades that led to this metabolic dysfunction in the first place.

Therefore, you must absolutely understand that this is a four-week programme intended to correct major imbalances and dysfunction and get you on your way to reversing your diabetes and tuning your metabolism to efficiently run on fats as the primary cellular fuel. But that it is also intended to re-educate and teach you a completely new way of doing things on a daily basis in order to empower you in knowing what to do to be and remain in perfect health, why you do what you do, and why it works on a physiological and biochemical level.

Lastly, because of its strict timing and numerous elements throughout the day on a very regular schedule, you have to make this programme a priority, and, ideally, make it your primary activity during this period. You will probably find it close to impossible to follow if you are trying to maintain other demanding and time consuming activities like a full time job at the same time. So, just take a break from everything else, and concentrate on your health for a month. Afterwards, once many of these new ways of taking care of yourself have become more habitual, you will find it far easier to maintain a similar routine while working and doing other things simply because it will be far more natural for you.

The first five days

Background

For maximal effectiveness, we start with a period of intensive cleansing and alkalisation during which the key nutritional element is fresh juice of green vegetables, and the sources of calories are restricted to coconut oil, coconut milk, coconut flesh and milled chia seeds. Like a traditional juice cleanse, everything that is consumed is raw and therefore living, enzyme rich, and easily absorbed with minimal digestive stress; and nothing is acid-forming and acidifying, for this would defeat one of the fundamental purposes of the healing protocol which is essential to restore correct pancreatic function.

Highly unlike a traditional juice cleanse, however, there are virtually no simple sugars consumed and entering the bloodstream, and there is a significant amount of fat, almost all derived from coconut oil. This serves several purposes: it provides the metabolism a perfect fuel for cellular function that is easily broken down and generally not stocked away in fat cells; it enhances the production of ketone bodies necessary to fuel the brain in the absence of glucose, at the same time helping heal and repair the brain by promoting the evacuation of plaques from cerebral arteries and thus increasing blood flow to these starved brain cells; it maximises the absorption of the rich array of minerals, antioxidants and phytonutrients in the green juices; and finally, but also importantly, it very effectively suppresses hunger.

During this period the body will quickly and efficiently make the metabolic transition from using exclusively glucose as is always the case in diabetics and insulin resistant individuals, to burning fat reserves as the cellular fuel of choice; significantly decrease the level of systemic inflammation and release several kilograms of the water that is retained under conditions of chronic inflammation and insulin resistance, in great part responsible for hypertension, swelling of the joints and extremities, and poor blood circulation; thoroughly alkalise, cleanse and begin to rejuvenate, heal and repair the vital digestive organs: the stomach and intestines, and the kidneys, pancreas and liver; alkalise the blood and eliminate large amounts of accumulated acids stored throughout the body in the joints, soft tissues and muscles.

All of these processes are very physiologically tiring. For this reason it is important to rest in the afternoon, and have long nights of deep sleep every night. Hence, only walking is recommended as a form of exercise during this period, ideally in the morning (between 9:00 and 10:00) and in the evening after the last meal (anywhere between 20:00 and 22:00).

Detailed schedule

Here is what and when to eat and drink during this period (times can be adjusted slightly according to sleep patterns):

8:00-9:00 (or upon getting out of bed) – Water and Mg oil

  • Put on Mg oil all over the legs, arms, chest and abdomen, shoulders and back (as best you can). Leave on for at least 30 minutes before showering.
  • Large glass of plain water (400-500 ml)
  • Supplements:
    • Proteolytic enzyme complex (3; Baseline Nutritionals)
    • Spirulina (3; Nutrex) / Chlorella (5; Healthforce Nutritionals)
    • Tulsi extract
    • Lugol’s iodine solution (in water; 5%: 6 drops, 15%: 2 drops)
    • ATP Cofactors (Optimox)
    • Probiotics (Prescript-Assist)

9:30-10:00 – Green juice and chia seeds

  • Glass of water with milled chia seeds (1 flush tablespoon)
  • Green juice with coconut oil (1 tablespoon, melted and emulsified with hand-held blender)
  • Supplements:
    • Niacinimide (2)
    • Turmeric (powdered (2) or extract (1))
    • Cinnamon (powdered (2) or extract (1))
    • Krill Oil (2; Mercola)
    • Astaxanthin (Nutrex)
    • A/D/K2 (DaVinci Laboratories)
    • Zinc (MegaFood)

11:30-12:00 – Lemonade

  • Lemonade: 1 medium (or 2 small) pressed lemon, 1/2 tsp salt, 2 mini spoon stevia in 500 ml of water.
  • Vitamin C: 1/2 tsp with small amount of water, stir until fizzing stops, fill small glass half way. (Ultimate Ascorbate C Powder by Source Naturals mixed with highest quality, food grade, powdered sodium bicarbonate in ratio 2:1)

12:00-12:30 – Salty veggies

  • Cucumber, kohlrabi or celery with salt
  • Supplements:
    • Enzymes (3)
    • Spirulina (3) / Chlorella (5)
    • Tulsi
    • Lugol’s
    • ATP Cofactors

13:00-13:30 – Green juice and coconut milk pudding/ice cream

  • Green juice without coconut oil
  • Coconut milk pudding (blueberry, raspberry, blackberry or cacao-chia)
  • Supplements:
    • Niacinimide (2)
    • Turmeric (powdered (2) or extract (1))
    • Cinnamon (powdered (2) or extract (1))
    • Krill Oil (2)
    • Astaxanthin
    • A/D/K2
    • Zinc

14:00-15:30 – Sleep

Sleep (very important for the first 5 days that will be very tiring for the body in terms of cleansing and repair)

16:00-16:30 – Water

  • Large glass of water
  • Supplements:
    • Enzymes (3)
    • Spirulina (3) / Chlorella (5)
    • Probiotics

16:30-17:00 – Green juice and chia seeds

  • Glass of water with milled chia seeds (1 flush tablespoon)
  • Green juice with coconut oil (1 tbs melted)
  • Supplements:
    • Niacinimide (2)
    • Turmeric (2)
    • Cinnamon (2)

18:00-18:30 – Lemonade

Lemonade and Vitamin C (as above)

19:00-19:30 – Salty veggies

  • Glass of water with milled chia seeds (1 flush tablespoon)
  • Cucumber, kohlrabi or celery with salt
  • Supplements:
    • Enzymes (3)
    • Spirulina (3) / Chlorella (5)

20:00-20:30 – Green juice and coconut macaroons

  • Green juice without coconut oil and coconut macaroons (but not with cacao).
  • Supplements:
    • Niacinimide (2)
    • Turmeric (2)
    • Cinnamon (2)

22:00-22:30 (just before bed) – Psyllium and charcoal

  • Large glass of water with psyllium husks (2 rounded teaspoons, mixed and allowed to swell for a few minutes)
  • Supplements:
    • Charcoal (Source Naturals)
    • Valerian root extract (Bluebonnet Nutrition)
    • NightRest (Source Naturals)

Beyond the first five days

Background

At this stage, the body will have undergone a radical transformation biochemically and physiologically from the inside out. Most noticeable will be the loss at least 4-6 kilos of water (about 2 kg) and fat (about 2-4 kg), with the accompanying feeling of being much lighter and thinner at the waste with a deflated abdomen and gut. The digestive system will have experienced a very effective cleansing and bowel movements will be noticeably more regular and quite different in texture, smell and sensation. The smell and volume of both urine and sweat will have evolved markedly during this period. And all the vital digestive organs will have been given a powerful boost and rejuvenation, but this cannot really be felt. You should as mindful as possible of all of these details and everything else you can notice over the course of the first five days. This will give you a much deeper appreciation of the process and of its importance in regards to your moving towards better health.

We can now continue with a regime that includes two green juices per day instead of four, dropping the afternoon green juice, and replacing the evening green juice by a large green leafy salad with small amounts of nuts, seeds or fish (sardines, anchovies or wild smoked salmon, for example). We will also reduce quantity and frequency of supplements.

In addition, we will introduce a component of exercise that is absent in the first five days, which will greatly enhance the body’s response to the new regime and metabolic environment. The exercise will take the form of fast walking with very light weights for strengthening the shoulders and arms, Pilates workouts to develop strength in the core muscles (abs and back) for postural balance, high intensity interval training coupled with resistance as well as cross-fit training with weights to increase cardiovascular and metabolic efficiency, fat and glucose utilisation, muscle mass, done density, and tendon and ligament strength and flexibility.

Detailed schedule

8:00-9:00 (or upon getting out of bed) – Water and Mg oil

  • Put on Mg oil all over the legs, arms, chest and abdomen, neck, shoulders and back (as best you can). Leave on for at least 30 minutes before showering.
  • Large glass of water (400-500 ml)
  • Supplements:
    • Proteolytic enzyme complex (3)
    • Spirulina (3) / Chlorella (5)
    • Tulsi extract
    • Lugol’s solution (in water; 5%: 6 drops, 15%: 2 drops)
    • ATP Cofactors
    • Green tea extract
    • Green coffee bean extract
    • Probiotics

9:00-9:45 – Walk

Fast walk with 1 kg weights in each hand, using them to do shoulder rotations, biceps curls and triceps extensions while walking.

10:00 – Green juice

  • Glass of water with milled chia seeds (1 flush tablespoon)
  • Green juice with coconut oil (1 tbs, melted and emulsified with hand-held blender)
  • Supplements:
    • Niacinimide (2)
    • Turmeric (powdered (2) or extract (1))
    • Cinnamon (powdered (2) or extract (1))

11:30-12:00 – Lemonade

  • Lemonade and Vitamin C (as above)

12:00-12:30 – Salty veggies

  • Cucumber, kohlrabi or celery with salt
  • Supplements:
    • Enzymes (3)
    • Tulsi
    • Lugol’s
    • ATP Cofactors
    • Green tea extract
    • Green coffee bean extract

13:00-15:00 – Workout

  • Resistance and high intensity interval training on Mondays
  • Pilates on Tuesdays, Wednesday and Thursdays
  • Cross Fit training on Fridays
  • Rest on Saturdays and Sundays

15:00-:15:30 – Gren juice and coconut milk pudding (or ice cream)

  • Green juice without coconut oil
  • Coconut milk pudding or ice cream (blueberry, raspberry, blackberry or raw cacao and chia)
  • Supplements:
    • Niacinimide (2)
    • Turmeric (2)
    • Cinnamon (2)
    • Krill Oil (2; Mercola)
    • Astaxanthin (Nutrex)
    • A/D/K2 (DaVinci Laboratories)
    • Zinc (MegaFood)

15:30-16:30 – Sleep

Sleep (highly recommended; optional after the first five days)

16:30-17:00 – Water

  • Large glass of water
  • Supplements:
    • Enzymes (3)
    • Spirulina (3) / Chlorella (5)
    • Probiotics
    • Green tea extract
    • Green coffee bean extract

17:30-18:00 – Lemonade

Lemonade and Vitamin C (as above)

18:00-18:30 – Salty veggies

Cucumber, kohlrabi or celery with salt

19:00-20:00 – Green juice, salad and coconut macaroons

  • Green juice without coconut oil (then wait 30 minutes)
  • Green leafy salad with oil and salt (no vinegar), and small amount of either walnuts, anchovies, sardines or salmon (smoked, grilled or pan fried)
  • Coconut macaroons for dessert.
  • Supplements:
    • Niacinimide (2)
    • Turmeric (2)
    • Cinnamon (2)

22:00-22:30 (just before bed)

  • Supplements:
    • NightRest
    • Valerian root extract

Concluding remarks

This is a programme designed for reversing type II diabetes, and will, without any doubt, do exactly this. What might vary from one person to another is really only the time that will be required to recover ideal insulin sensitivity.

It is important to appreciate, however, that it would be just as effective in treating any kind of degenerative condition like arthritis, but also atherosclerosis of the coronary or cerebral arteries, and arteriosclerosis due to the accumulation of calcium in the tissues; kidney or liver disease but also pancreatic fatigue or dysfunction; stomach and peptic ulcers, but also candida overgrowth and infection, as well as leaky gut syndrome; and of course, probably the most fearsome of them all—cancer.

Why? Because all health problems and disease conditions stem from biochemical and hormonal imbalances, and metabolic and physiological dysfunction. Therefore, in order to either prevent or correct any one problem, all problems must be prevented and corrected. For some of us—very few of us indeed—this is plainly obvious. It is, however, also obvious that this understanding is definitely absent—conspicuously and painfully absent—from modern conventional health care, no matter what it is intended to treat and no matter where we look.

Hence, it is my hope that this programme will not only help diabetics and pre-diabetics permanently reverse their diabetes and all the associated problems related to the underlying metabolic dysfunction, but also help all those who wish to treat whatever health concern they may have, as well as those who wish to prevent any such health problems from developing.

The only way to develop and nurture optimal health is for every cell, organ and system of the body to function optimally. Therefore, this is what we must do, and that’s the bottom line. Good luck with the programme. Naturally and as usual, you are welcome to post you comments, questions and observations, especially those from your experience with the programme. I would be very happy to hear from you.

If you enjoyed reading this article, please click “Like” and share it on your social networks. This is the only way I can know you appreciated it.

The crux of intermittent fasting

It is less than futile, in fact, it is outright nonsensical, to argue in favour of or promote an explanation that is in contradiction with observational evidence. What is required is to find, or at least try to find, a sound and well-founded explanation. And not just for some of the observations, but for each individual observation, as well as for the entire ensemble of observations. This is what we should do.

Fasting means not eating; everyone knows that. The meaning of the word has been loosened to include not consuming appreciable amounts of calories, as in doing a green juice fast, for example, but which should instead rightly be called a cleanse. The expression intermittent fasting implies a cycle of some kind, and is used to mean not eating for periods of 16, 18, 24 or 48 hours, but on a regular basis, like every week or even every day.

Fasting has been known and recognised for its often quasi-miraculous curative effects for thousands of years. Indeed, it is possible to find accounts of individuals recovering from just about any ailment and disease imaginable simply from fasting long enough. It seems, however, that fasting as a healing modality, has, over the past couple of centuries, steadily grown less popular in the medical profession and, as a consequence, also in the general population.

A resurgence of scientific interest over the last decades in the benefits of fasting for treating various degenerative conditions like arthritis and cancer, but also for extending healthy lifespan about which I will write at one point in the future, has brought it back into the spotlight, especially in circles of optimal health enthusiasts, which includes some gym go-ers and body builders interested not so much in optimal health, but mostly in losing fat and gaining muscle.

Therefore, there has been quite a few people trying out or adopting intermittent fasting for periods of a few weeks to a few months, or even longer, but reading things here and there shows that they have had varying success given their initial motivations, whatever those might have been.

Ori Hofmekler was one of the first to popularise the idea of intermittent fasting with his book The Warrior Diet. He has continued to write and to encourage intermittent fasting for a wide range of benefits, especially in regards to the goal of improving body composition, as one of his last titles expresses perfectly: Maximum Muscle, Minimum Fat.

Dr Hertoghe, the world famous endocrinologist and anti-ageing specialist, as well as Mark Sisson (Primal Blueprint) have also been vocal and influential proponents of intermittent fasting for a while. More recently, Dr Mercola did several interviews with Hofmekler, and wrote a few articles on the topic, sharing his experience and enthusiasm for the health and fitness benefits intermittent fasting can bring. These are just some of the well known players that I know of and respect in the natural health community, that have endorsed and promoted this kind of cyclical fasting.

Naturally, as is the case for almost any topic we can think of, there are opposing opinions and, in fact, bashing of intermittent fasting as a means to improve health and body composition, especially in the popular fitness and gym culture. And, as is also the case for almost any topic we can think of, contradictory views and opinions are usually caused by misunderstanding, or at least, incomplete understanding of the elements involved, and in particular the more subtle ones.

On the one hand, we have the proponents claiming that we can very effectively get much healthier, with much improved energy levels, mood, digestion, and natural detoxification and excretion of metabolic acids; normalise and recover the optimal balance of specific hormones, and eventually, of the entire hormonal system; over time lose all excess body fat reserve, increase flexibility and hasten recovery, better preserve our precious muscle tissue and build more very efficiently. And these are just some of the claimed (but also documented) benefits of intermittent fasting.

On the other hand, the nay-sayers and bashers report that these claims are more than just false, they are, in fact, often the exact opposite of what they have found or seen for themselves or in others coming to them for help and expert advice. Reports of feeling really terrible, with massive headaches, bad digestion, awfully low energy levels, and thus, obviously, very bad and destructive moods; loss of some fat but also, over time, of lots or maybe even most of their muscle tissue; extreme hunger, with frightening ravenousness when evening mealtime comes around, leading to monstrous, uncontrolled and uncontrollable overeating without discrimination of food kinds or quality, and over time, showing obvious signs that can be identified as those associated with eating disorders.

How is it possible to have research, studies and documented cases—plenty of documented cases—that provide observational evidence—proof, if you prefer—that support the claims of both of these camps? How can we observe and actually measure such profoundly different consequences in different people that are supposed to follow comparable diets, consequences that are diametrically opposed to one another. In other words, observational evidence that appears to be completely and totally contradictory?

A simple approach, the one espoused by many, maybe most, of the intermittent fasting bashers, is to just say that proponents are wrong and imagining things, letting themselves be fooled by the hype, but actually blind to the reality of the detrimental consequences of practicing cyclical fasting.

For me, the only satisfactory approach is the one that seeks to explain all the observations, to reconcile all the observational evidence, and make sense of the entire ensemble of information available through a physiology and biochemistry based explanation that is complete. I also think it is fair to say that there are more better informed proponents than there are opponents, but this is not obviously the case, and I would thus not bet much on this claim.

Here it is, the crux of the matter, the one single crucial element needed to understand and explain the wide spectrum of apparently contradictory observations that is overlooked because it is misunderstood:

The body’s response to intermittent fasting is entirely dependent upon the state of one’s metabolism, and everything about it hinges on the physiology of nutritional ketosis. 

In fact, the vast majority of the benefits of intermittent fasting are those derived from nutritional ketosis but heightened by the fasted state, and therefore, can only become manifest if the fasting individual is keto-adapted and remains in nutritional ketosis most of the time.

You might be thinking: what in the world is nutritional ketosis, and where’s the explanation for the contradictory observations? Nutritional ketosis is the metabolic state in which the liver manufactures ketone bodies from fat to provide fuel for the brain cells that can only use glucose or ketones for their energy needs. This only happens if and when circulating insulin levels are low, and when blood glucose stays below 80-90 mg/dL for a period of 24-48 hours (generally speaking, on average, and in normal circumstance). The reason is fat will not be burned for fuel is there is plenty of glucose in the blood, and in order to burn fat, insulin must be low.

This metabolic state is induced either by fasting—this is the quickest but also most extreme way to do it, or by eliminating insulin-stimulating carbohydrates (sugars and starches) from the diet—this is by far the easier and obviously much more sustainable way to do it. The longer it is maintained, the better adapted the metabolism becomes. But before ketones are produced to fuel the brain, the body goes through metabolic changes to which it tries to adapt as best it can. The most important but also most severe of them all, is the fundamental shift from using glucose as the primary fuel, not just for the brain, but for all cellular energy needs in the body, to using fats, both from body fat reserves and from food.

The bane of our time is global, chronically elevated insulin levels. Hyper-insulinemia, as it is technically called, sits squarely as one of the root cause of all the diseases of civilisation that kill most (90%) of us today, more or less uniformly across the planet. What does this have to do with our considerations of intermittent fasting? It has everything to do with it:

Insulin is the master hormone that orchestrates the metabolism in what relates to storage and usage of macronutrient (carbs, fats, and proteins) at the cellular level.

Chronically elevated insulin always and inevitably leads to insulin resistance. Insulin resistance means that cells do not respond to insulin as they should, and require ever increasing concentrations of insulin in order to move glucose into the cell. And ever increasing concentrations of insulin means ever increasing inability to use fat cellular fuel, with particular difficulty in unlocking and tapping into the usually greatly overabundant reserves of body fat.

What is truly remarkable is that insulin resistance, even if it has been developing and growing steadily with each passing day and with each high carb meal or snack over our entire lifetime, it can be reversed in weeks when insulin-stimulating carbs are eliminated from the diet: 48 hours to enter nutritional ketosis; one week for water retention release, initial intestinal detox and basic adaptation to fat-burning; four weeks for functional keto-adaptation; and 8 weeks for complete keto-adaptation.

Eliminating insulin-stimulating carbs eliminated the need for large insulin secretions by the pancreas. Therefore, both glucose and insulin concentrations steadily decrease with time, and eventually fat-burning and ketone production kicks in, marking the first step in the transition of the metabolism from sugar-burning to fat-burning, which is what we referred to as fat- or keto-adaptation.

There is a catch though: before fat-burning and ketone production begins, the metabolism of the insulin resistant individual will go through withdrawal from its sugar addiction. First, sugar levels start to drop. After a number of hours, 3 to 4 hours say, blood sugar is too low to supply enough fast-burning glucose to cells for their metabolic activities. Because insulin remains high, and because the body is highly insulin resistant, as we said, it is not possible to use fat from the body’s fat stores. Therefore, it is the liver that comes to the rescue and begins to convert its stores of glycogen into glucose and pumping that into the bloodstream to provide cellular fuel.

Within a few hours, however, the glycogen in the liver is depleted, and blood sugar drops once again, and lower still. Because the body remains unable to tap into its fat reserves due to the state of insulin resistance, it has, at this point, no choice but to turn to muscle tissue, from which it is far easier to breakdown protein and manufacture glucose than it is to start burning fat. And thus, the muscles are eaten away in order to provide the glucose to all of the multitude of insulin resistant (sugar-addicted) cells throughout the organism.

We now come to the final analysis of our observational evidence in regards to intermittent fasting, and consider two scenarios that can explain, as it rightly should, the ensemble of observations in its entirety, and thus clarify and reconcile the apparent contradictions that are seen, and which lead to serious confusion about the issue, even, and maybe especially, among our health, fitness and bodybuilding experts.

Scenario 1: We take a perfectly keto-adapted person who has been eating a diet devoid of insulin-stimulating carbs for a long time, and who therefore always has very low glucose and insulin levels, and as a consequence, exquisite insulin-sensitivity. What happens if they stop eating? Nothing special, really. Their body is always using fat and ketones to supply all healthy body and brain cells with their metabolic energy needs. So, if there is no fat that is provided through the digestive system, then it is taken, without any trouble or noticeable changes in energy levels or concentration, from the body’s fat reserves that are always plentiful, even in the leanest among us with single digit body fat, because 1 gram provides 9 calories, which means that we need only about 200 g for a whole day of normal activities, and have at least 5 kg at any given time (8.5% fat on 60 kg body weight).

Moreover, if we exercise during the fast, there is no noticeable difference because at low intensity, cellular energy needs are taken care of by fat which is continuously released from the fat stores into the bloodstream, while at higher intensity the glycogen stored in the muscle cells themselves, can be used in the form of quick burning glucose together with additional supply from the liver than converts its stores of glycogen if need be (if stress hormones are secreted).

So, biking and working out with weights, for example, is perfectly fine and actually feels great. Even more interesting is the fact that stimulating the muscular system by exercising while fasting triggers the release of various hormones in addition to growth hormone for which there is nothing more effective than fasting, whose purpose is primarily to preserve those physiologically important muscle tissues as essential for functional survival, while breaking down to recycle the proteins of other tissues which are not required like lumps, tumours, and scar tissue. And this means that the hormonal environment created by exercise under fasting conditions is conducive to both preserving and building more muscle, all the while also expediting and maximising fat-burning. And this is what is observed.

Hunger is present at times, but is certainly far from being problematic. There are no headaches, no stomach pains, no sleepiness, no scattered mental discursiveness, no problems concentrating or working. Sitting down to eat the evening’s nutrient-dense, enzyme-rich and high fat meal with adequate amounts of protein for tissue repair and muscle building, is nourishing, perfectly satisfying, and well digested throughout the evening and night, as long as we eat several hours before going to bed. No over-eating, no cravings, no psychological disturbances, no problems at all. A picture of perfect metabolic efficiency.

Scenario 2: We take an average but pretty active person from the general population who eats a standard diet with plenty of insulin-stimulating carbs, both simple sugars, and complex carbs in the form of pasta, rice, whole grain bread, etc (70% of calories), and who therefore always has high blood glucose and insulin levels, and as a consequence, pretty strong insulin resistance. What happens if they stop eating? We saw this earlier: blood glucose drops, but not insulin; the liver starts to pump out glucose to pick up the slack, and runs out after about 3-5 hours; sugar drops once more, but not really the insulin; since fat stores cannot be tapped into, muscle tissue is broken down to manufacture glucose; longer period of fasting means more muscle breakdown.

If we exercise gently, things are fine at first because we can tap into the glycogen stored in the muscles, but will soon get much worse because we increase the energy demands, but continue to be unable to use body fat stores, and therefore increase the rate at which muscle tissue is broken down, especially if we do weights and high intensity training.

Low intensity aerobic exercise depletes glycogen from the muscles and when it runs out, we feel exhausted, completely flat out. (This is the same as hitting “the wall” in long distance events, and only occurs because the body cannot readily tap into its fat reserves: a well keto-adapted athlete never really hits any such walls!) Far worse is high intensity exercise, which causes more intense and faster muscle breakdown, the higher the intensity, the more muscle breakdown.

Waking up in the morning after a night’s sleep (and unconscious fast), we are starving, dearly longing for the bread, the jams, the cereals, the orange juice, the waffles, the maple syrup, and everything else we can imagine, but we hold out and go to work. Every hour is excruciating, terrible headache, hunger pains throughout the abdominal cavity, but when these subside, we are falling asleep, with a complete inability to concentrate on anything at all. We feel like shit.

By the time evening rolls around, we are so ravenous we would eat a horse. So we sit down and eat, and eat, and eat everything we can get our hands on: pizza, pasta with sauce and cheese, garlic bread with butter, steak and potatoes or french fries, and then desert, sweets, oh man, we waited all day to eat, and now we can eat anything and everything we want, because tomorrow we’ll be starving again for the whole day. We get up in the morning, and the whole cycle starts over again.

Over time we kind of get used to it, but because we don’t understand the most essential element of the whole thing—nurturing nutritional ketosis—we remain just as insulin-resistant, every day we feel shitty, every night we eat like a pig, and throughout the whole time, more or less, we break down muscle, and our insulin resistance prevents appreciable fat loss. After doing this for a while and seeing the detrimental effects of this regime, we go seek help from a fitness expert. They tell us that this intermittent fasting thing is a load of shit, and as them, grow instantly convinced that all the stuff people say about the benefits it can bring for optimal health and improved body composition is also a load of shit: if it didn’t work for me, then it simply cannot work for anyone.

Unfortunately, neither we nor the fitness expert understands enough physiology, biochemistry, and endocrinology to be able to make sense of these conflicting and contradicting accounts, personal experiences, and observations reported in the scientific literature, and just settle into this view that it really is a load of BS, and that it might work a little, sometimes, on some people, but not on others, and no matter what, it always leads to pathological states of mind, if not full fledged eating disorders.

It is my hope, however, that you are now able to see how these very observations, as conflicting, contradictory, and certainly quite puzzling as they may seem at first, can be explained and reconciled marvellously well in light of a better understanding of the basic principles of energy metabolism, and of the remarkable but unfortunately almost universally misunderstood state of nutritional ketosis, that most medical professionals usually mistake for the pathological condition of diabetic ketoacidosis.

Finally, in closing, I have a confession to make: I have been experimenting with intermittent fasting in one form or another for many years now. I never eat anything before midday, and on most days until about 14:00, which makes it an approximately 18-hour fast from 20:00 the night before. On weekends, I fast until noon, and then go do weight training. On those days, I usually eat for the first time around 17:30, and make that my single meal of the day. On some days I eat a large lunch and dinner to increase my overall calorie and protein intake. I usually workout 3-4 times a week, and usually in the late afternoon-early evening.

I have not experienced loss of muscle since I dropped the insulin-stimulating carbs from my diet in 2007. Both muscle tone and strength is maintained very well even after long periods without resistance training. I have, however, never made a particular effort to gain muscle mass. This year, I would like to see how much muscle I can put on, and will thus put the science to the test for myself. If you are interested, don’t worry, I’ll keep you posted. If you’re not, then that’s fine too.

But if there is a single thing you must remember from what I wrote, it is this: you can only really benefit from intermittent fasting when you are keto-adapted, and remain in a state of nutritional ketosis the majority of the time. Otherwise potential benefits are lost, and the practice can become rather detrimental.

hunterslookingoverplain

How long do you think these hunters hunt each day? Do you think they have a big breakfast before going, or a large lunch while they are out? How long do you think they are out before they settle back around the fire in their village to have their main meal of the day? And what do you think they will eat when they do return with their catch of the day?

(This article was written after reading this article by Dani Shugart on T-Nation sent to me by a friend who knew I would have some remarks to make, and probably some clarifications to bring to it.)