Two short fat-loss tales

– You look like you’ve lost some weight.
– Yes, I have! I’ve lost 12 kg in 4 months. You remember, a year ago, I told you I would do my own diet, and I did!
– That’s great, congratulations!
– You know what I did? I stopped eating junk. I didn’t do anything else. I stopped eating chocolate bars and candy; cakes, cookies and ice cream; chips and fried foods, and that’s it. I eat everything: anything that is a whole food, and I do have bread and potatoes, rice and pasta, as well as cheese and fruit. I didn’t do anything crazy or radical, I just eliminated junk food from my diet.
– That’s really good. I’m happy for you. Keep it up!

This is how went a short conversation I had recently with a colleague who, a couple of years ago, was one of the 25 people who attended the talk I gave at ESAC: Water, sugar, protein and fat. It could be (I’d like to imagine) that the talk was like a little seed in her mind that was what eventually grew into enough of a motivation to start what she had been doing for a few months already, making her feel really great about it, as anyone would, of course. And I’m really happy for her, and also very happy to possibly having been a little positive influence somewhere along the line.

Another colleague stopped by my office in the spring to ask about the fitness club (a club to encourage people to exercise by subsidising part of the monthly membership to a great sports club close to where we work for which I was president for several years until a month ago or so). He mentioned in passing that he wanted to start doing sports in order to lose weight. Naturally, I immediately said that exercising wasn’t really the key to fat-loss. He was surprised, as most people are when they hear this. Being interested and inquisitive about this point (he works as a scientist, after all), I gave him a 10-minute summary of the biochemistry of fat loss, and he left very motivated to start on his fat-loss programme.

About one month later we crossed paths on the main road in front of the canteen. He looked much thinner: he actually looked quite trim considering that as little as four weeks before he not only looked but was definitely quite chubby.

– Things are going well, I see! You look like you’ve lost a lot of weight already.
– Yes, I’ve lost 10 kg. Now, after the first four weeks, I’ve started to eat carbs again, but I’m eating 1500 calories and exercising every day. I started eating some complex carbs because I need energy.

I masked my internal cringing, and just said “well, you are much leaner than you were. Good job and keep it up!” But I thought: What in the world!?! How did he come to think like this after I explained to him how fat loss works, and which he seemed to understand? The thing is, he did cut out all carbs for four weeks—there’s no way in the world he would have lost this much fat any other way—but for whatever reason, he now thought he should start again because he was exercising every day and therefore “needed energy”. He really didn’t understand the most important points I had tried to relate in that chat we had in my office. I am, in any case, very happy for him as well, because it is always better to be leaner than fatter, especially considering that a lot of the excess fat accumulating in our abdominal cavity is stuffed in between and all around our vital and digestive organs, putting constant pressure on everything in there, and that’s really bad.

Now, I would like to think that all of you readers of this blog already know what I want to point out and explain in regards to these two short fat-loss tales. Whether you do or not, I thought it was a good occasion to review the essentials of fat-loss in a quick and focused but more informal style than in other articles I have written. You are more than welcome to take a few minutes and try to guess what I’m about to explain about these two cases before moving your eye gaze down onto the first line of the next paragraph.

Why did the first colleague I talked about lose so much weight? Is it because she started exercising? No. She never exercised and still doesn’t. Is it because she starved herself on a low-calorie diet Weight Watchers style? No. She hasn’t been hungry because she hasn’t tried to eat a lot less, and has three meals a day without paying close attention to how much and is certainly not counting calories. Is it even because she stopped eating “junk food”? No, it’s not. The reason why she has lost this weight seemingly so easily is only because she markedly decreased the amount of sugar she ate, which immediately translated in lower blood sugar levels throughout the day and night, which in turn translated into lower insulin levels also throughout the day and night. As insulin drops, fat-burning starts.

Will she continue to lose her fat reserves indefinitely at this rate until there are none left? No, she won’t: fat utilisation, and therefore fat-loss rate, is inversely proportional to insulin levels. So, the lower the blood sugar, the lower the insulin, and the lower the insulin, the faster the fat-loss rate. Because she still eats sugar in the form of starches, the sugar/insulin concentration will only sometimes drop low enough for fat-burning to start, and will not drop very low and stay there to allow the metabolism to fully adapt and settle into a stable and more or less constant fat-burning mode. She will remain in intermittent fat-burning and sugar-burning. Because her fat reserves are at this stage still very large (from the organism’s perspective they are still effectively infinite), the relatively lower blood sugar for periods of several hours will prompt the body to continue to let go of these excessive fat reserves relatively easily until a steady state is reached and fat-loss stops. At that point she will still have plenty of excess body fat, but will be unable to lose any more without dropping insulin levels lower.

Of course, eliminating junk food—mostly commercial sweets and fried stuff—and feeding ourselves with actual food, no matter what it is, makes a huge difference. This is definitely the very first step in any change of diet towards better health. That’s obviously not something worth debating or even discussing. The point is that no matter what the changes in the diet, the biochemistry of fat loss is always the same, and it is the same for everyone. Everything is about insulin for the very simple reason that it is insulin that shuttles nutrients from the bloodstream into cells. This is true for sugar, protein and fat. But insulin is released by the pancreas primarily in response to the presence of sugar in the blood (but also in the absence of stress hormones which block insulin’s action to retain the sugar in circulation as long as the “potential threat” remains). The gist of it is: high insulin—nutrient storage, low insulin—nutrient release; high insulin—fat storage, low insulin—fat-burning.

What about the second colleague exercising and eating only 1500 calories that include starches and some fruit? He will continue to lose fat until the body determines that the bulk of the really excessive fat reserves have been spent, and then will stop. This will happen probably somewhere around 20% body-fat for guys and 30% for women, but will depend on age, exercise level, food, etc. So, he will get lean enough to appear slim, feel light, and also feel pretty good about himself every time someone compliments him on his figure. The more serious problem for him is that exercise, and especially the aerobic exercise like running that he is does to “burn more calories”, breaks down muscle quite quickly but it is not rebuilt.

The low calorie intake places the metabolism in calorie-deficit given that an average man needs about 1500 calories just for basic metabolic functions. This means that all additional calorie requirements have to come from somewhere other than the food that is eaten. Ideally, of course, these would come from fat reserves of which there are plenty; that’s the idea of the low-calorie dieter. But this will and can only happen if insulin levels are at rock bottom: I mean 1–3 units. Otherwise, the body will cannibalise its muscles because it can most easily get the easiest-burning cellular fuel it needs by converting protein into glucose. And the result? Over time he’ll lose most of his muscle, will retain that 15-20% fat, and will inevitably acquire the skinny-fat look. You know what I mean: the look of a slow, 40-50 year-old long-distance runner on a typical high-carb “runner’s diet” who looks skinny but giggly, with barely any visible muscle and no definition at all: muscle tissue broken down and not rebuilt; fat reserves not used because insulin is too high.

Had you guessed all that? Do you now understand how to burn fat without hunger and without losing muscle? Drop sugar levels, drop insulin levels: lose the fat reserves, keep the muscle. Eat fibrous veggies, lots of unprocessed fats and enough clean protein; don’t eat any sugar or starch. Very simple.

And here’s a teaser for a future series: if you want to build muscle and maximally slow down ageing, you will—in addition to this kind of shift in diet—also start lifting weights: squats and dead lifts, bench press and overhead standing press, bent-over rows, dips and pull-ups; and the heavier and more strenuous the better!

But if you’ve never done any of that, don’t go out and start lifting as much as you can right away because you’ll hurt yourself: you have to start slow, and have impeccable form and technique before starting to put on more weight. However, the fact is that there is really nothing more effective than heavy weight lifting to correct metabolic imbalances, postural problems, muscle and joint weaknesses; to burn fat, build muscle, and increase bone density; and totally rejuvenate the body and restore a incredibly youthful hormonal profile. The most amazing thing is that this is true for men and women of any age. I hope to find the time and write about this in the not-so-distant future.

If you think this article could be useful to others, please ‘Like’ and ‘Share’ it.

We were never meant to eat simple or starchy carbohydrates

The transition between hunting-gathering and farming took place over a period of about 1000 years between 11000 and 10000 years ago in the Fertile Crescent, a crescent-like shape of land that stretches across parts of Israel, Lebanon, Jordan, Syria, Iran and Iraq. The first people to settle were hunter-gatherers that built villages in places they found provided enough food to sustain them without having to move around. At first, these were “seasonal” villages located in different areas, to which they returned in a seasonal cycle. Finding ways to store the grain from the large seeded grasses like barley and emmer wheat growing wild but in large quantities, allowed them to settle permanently. This most likely led to a rapid growth of the population, that was matched with a proportionally rapid growth in the demand for food. The response was the development of agriculture.

The gradual decimation of the wild game over the course of about 2000 years led to the domestication of the most easily domesticable, large mammals to inhabit the region, the sheep, goat and pig, all about 8000 years ago, followed by the cow about 6000 years ago. It is very interesting and important to point out, from an anthropological point of view, that the Fertile Crescent—the seat of civilisation—is the region in the world where there were the greatest number of large-seeded grasses, as well as the greatest number of large, easily domesticable animals, by far.

The cultivation of cereal crops allowed our ancestors, some 10000 years ago, to have, for the first time in our evolutionary history, enough spare time to develop tools and technologies, as well as arts and music. For the first time in evolutionary history, a handful of people could sow, tend to, and harvest enough cereal grain to feed hundreds or even thousands of people who were, therefore, free to do a multitude of other things. Without agriculture and this shift from the hunter-gatherer lifestyle of spending most of our waking hours hunting and rummaging around looking for food, we would not have developed much of anything because we simply never would have had the time to do so.

Now, although it is well known to most anthropologists, it is not a well appreciated fact that the cultivation and eating of cereal crops as an important source of calories, is possibly the most negatively impacting evolutionary mistake to have been made in regards to the health and robustness of our species as a whole. There was, indeed, plenty of free time, and we did develop technologies extremely quickly considering how slowly things had changed before then. But the price to pay was high.

Within as little as one or two generations, our powerful stature shrank markedly, our strong teeth rotted, our massive bones became thin and brittle, our thick hair grew thin and fell out at an early age. In fact, evidence indicates that while our hunter-gatherer ancestors were tall, strong, robust, with hard teeth and bones, and apparently healthy to their death—usually of a violent nature instead of progressive degradation through “ageing” as later became the norm, our oldest cereal-eating ancestors in contrast, were the exact opposite: small, weak, fragile, with rotten teeth, and advanced osteoporosis in their bones at the time of their death in their early 50’s. (For a lot more details about all the points discussed up to here, I strongly recommend Jared Diamond’s fascinating books: The Third Chimpanzee; Guns, Germs and Steel; and Collapse).

Today, at the beginning of the 21st century some 10000 years later, we know exactly why we were never meant to consume carbohydrates on a regular basis, let alone in large quantities as we do today, such that they provide a significant part of our daily calories—sometimes even the majority! We know exactly why because we have pretty clearly understood the primary effect of phytic acids or phytates, the importance of dietary fats, and the insulin mechanism.

Phytates are compounds that exist in all grains and legumes—where they are found in the greatest concentration—as well as in all nuts and seeds. Some animals like rats, for example, have evolved the necessary digestive mechanisms to break down phytates, but humans have not. The consequence is these bind to minerals in the gut and in so doing prevent their absorption into the bloodstream. The regular consumption of grains and legumes—and we believe that many of our first agrarian ancestors lived almost exclusively from grains—leads to severe mineral deficiencies that result in demineralisation of the teeth and bones, exactly as is seen in the remains of these ancestors.

Moreover, any diet consisting primarily of grains (and legumes) as was theirs, will also inevitably be extremely deficient in fat, that is now know to be essential for the proper function of every cell, tissue and organ in the body (especially the brain), but also crucial in the absorption of minerals. So, the combination of a high concentration of phytates together with an almost complete absence of fat, made for an extremely effective demineralisation, which is indeed seen in the smaller statures, weakened bones and teeth, and considerably shortened lifespan of our agrarian ancestors. This obviously still applies today: the more phytates, the faster the demineralisation; and the less fat; the faster the demineralisation.

Finally, insulin is a hormone secreted by the pancreas. There is always a certain concentration of glucose in the blood, and there is also always a certain concentration of insulin. If there isn’t a major metabolic disorder, then the higher the glucose concentration, the higher the insulin concentration. And conversely, the lower the glucose concentration, the lower the insulin concentration. But since the body is programmed to always keep glucose concentrations to a minimum, as soon as there is a simple carbohydrate in our mouth, insulin is secreted into the bloodstream. As the glucose—either from the simple carbohydrates or from the breakdown of starches—enters the bloodstream through the intestinal wall, and as its concentration continues to rise, the pancreas continues to secrete insulin to match the concentration of glucose; but always a little more, just to be on the safe side.

Why? If glucose were good for us, then why should we have this highly sensitive mechanism to always try to get rid of it?

Insulin’s primary role is storage of “excess” nutrients, and regulation of fat storage and fat burning: when insulin is high, there is fat storage; when insulin is low, there is fat burning. It’s very simple. This, in turn, means that insulin is the primary regulator of energy balance, and therefore of metabolism. From an evolutionary perspective, the importance of insulin is perfectly clear. Firstly, it is a mechanism that is common to almost if not all living creatures, from the simplest to the most complex, because all living creatures depend for their survival on a mechanism that allows them to store nutrients when they are available for consumption but not needed by their metabolism, in order to live through periods where food is not available. This is why the role of insulin is so fundamental and why it is a master hormone around which most others adjust themselves. But when glucose levels are higher than a minimum functional threshold, what insulin is trying to do, in fact, is to clear away the glucose circulating in our bloodstream.

Why? Because the body simply does not want large amounts of glucose in circulation. In fact, it wants blood glucose to be low, very low, as low as possible. And beyond this very low threshold of glucose concentration between 60 and 80 mg/dl, it always tries to store it away, to clear it from the bloodstream, to make it go away. It tries to store as much as possible in the muscles and the liver as glycogen, and converts the rest to fat stored away in fat cells. That the body does not want glucose in circulation is most certainly related to the fact that the insulin mechanism even exists: very small amounts of glucose in the bloodstream is essential for life, but large amounts of glucose in the bloodstream is toxic. And all simple and starchy carbohydrates stimulate the secretion of insulin from the pancreas.

Keep in mind that the presence of insulin promotes the storage of glucose, but also of proteins as well as fats. Once more, its role is to store away and deplete the “excess” nutrients in the bloodstream for later times of food scarcity. Once the insulin molecule has delivered its load (glucose, protein or fat) through the receptor on the cell, it can either be released back into circulation or degraded by the cell. Degradation of circulating insulin is done by the liver and kidneys, and a single molecule will circulate for about 1 hour from the time it was released into the bloodstream by the pancreas until it is broken down.

It is important to add that stress stimulates the secretion of stress hormones that in turn stimulates the release from and production of glucose by the liver, just in case we need to sprint or jump on someone to save ourselves. Obviously, the presence of glucose—now not from ingested carbohydrates but from the liver itself—will trigger the secretion of insulin in exactly the same way as if we had eaten sugar. This means that stress mimics the physiological effects of a high sugar diet. And that’s not good. In fact, it’s pretty bad.

Chronically elevated glucose levels lead to chronically elevated insulin levels. And this is much worse. Like for any kind of messenger mechanism—as is insulin, if there are too many messengers repeating the same message over and over again, very soon they are not heard well because their efforts at passing on the message becomes more like background noise. Frustrated that they are not taken seriously, the messengers seek reinforcements in numbers to be able to pass on their message more forcefully. This, however, leads to even more annoyance on the part of the listeners—the message recipients—that now start to simply ignore the message and the messengers. This process continues to gradually escalate up to the point where the terrain is completely flooded by messengers yelling the same thing, but there is no one at all that is listening because they have insulated their windows and doors, and closed them tightly shut.

Here, the messengers are the insulin hormone molecules secreted by the pancreas and coursing throughout the body in our veins and arteries; the message recipients are our cells: muscle tissue, liver and fat cells; and the message itself is “Take this sugar from the bloodstream, and store it away. We don’t want this stuff circulating around.” The desensitisation—the not-listening—to different, progressively higher degrees with time, is called insulin resistance. Finally, the complete ignoring by the cells of the message and the messengers is called type II diabetes.

Furthermore, insulin resistance—not in the muscle, liver and fats cells, but in the brain cells—clearly leads to neurological degradation identified as cognitive impairment, dementia, Alzheimer’s or whatever other terms are used. Because beyond the fact that type II diabetes and Alzheimer’s disease are both increasing together at an alarming rate in the US and other western countries, and beyond the fact that diabetics are at least twice as likely to develop Alzheimer’s compared to non-diabetics, the basic condition of insulin resistance inevitably leads to chronically elevated glucose concentrations simply because the cells do not allow the glucose to enter. And it is well known that glucose in the blood simply and straight forwardly damages to the lining of the blood vessels, which then leads to plaque formation—the body’s repair mechanism for the damaged cells underneath. Thus, as are the coronary arteries of advanced atherosclerotic heart disease sufferers (and diabetics): riddled with plaques, so are the arteries and blood vessels in the brains of Alzheimer’s sufferers (and diabetics).

Now, although many claim that these and other issues related to the development of Alzheimer’s disease and other kinds of neurological degradation are still relatively poorly understood, as far as I’m concerned, it’s all the evidence I need: Do you want the vessels supplying blood to the brain fill up with plaque in response to the damage caused by glucose circulating in the bloodstream? Do you want the coronary arteries fill up with plaque in response from the damage caused by glucose circulating in the bloodstream? I certainly don’t. How could anyone?

What do we need to do? Very simple: just eliminate  simple and starchy carbohydrates from the diet. Concentrate on eating a lot of green vegetables, tons of green leafy salad greens; plenty of fat from coconut milk, coconut oil, nuts and seed of all kinds; and a little animal protein from eggs, raw cheese, wild fish and meat (if you chose to do so). Blood sugar will drop to its minimum, insulin will follow suit, and the body’s own repair and maintenance mechanisms will clear out the plaques, repair damaged tissues, degraded unneeded scar tissues and small tumours and recycle these proteins into useful muscle tissue, and many, many more amazing things will happen to the body that it will gradually look and feel younger and stronger as time passes. Sounds too good to be true? Just try it, and you’ll see for yourself. I guarantee it.